
th12 A. P. Ershov Informatics Conference

Preliminary Proceedings

July 2–5, 2019
Akademgorodok, Novosibirsk
Russia

A.P. Ershov Institute of Informatics Systems SB RAS

Ministry of Science and Higher Education of the Russian Federation

Novosibirsk State University

A. P. Ershov Informatics Conference

PSI Conference Series, 12

th
 Edition

July 2–5, 2019, Novosibirsk, Akademgorodok, Russia

Preliminary Proceedings

N. Bjørner, I. Virbitskaite, A. Voronkov, Eds.

Organizers

A. P. Ershov Institute of Informatics Systems SB RAS

Novosibirsk State University

Sponsors

RFBR

Microsoft Research

Novosibirsk State University

STI International

STI Innsbruck

ARQA Technologies

Sibers

Novosibirsk

2019

II

UDK 519.6

A. P. Ershov Informatics Conference : Preliminary Proceedings / A. P. Ershov Institute of Informatics Systems. –

Novosibirsk: IPC NSU, 2019. – 366 p.

ISBN 978-5-4437-0911-6

This volume comprises the papers chosen for presentation at A.P. Ershov Informatics Conference (PSI Series, 12
th

Edition) to be held in Akademgorodok, Novosibirsk, Russia on July 2–5, 2019. The main goal of the conference is to

give an overview of research directions in computer science.

 UDK 519.6

RFBR Grant № 19-07-20041

 © Institute of Informatics Systems, 2019

ISBN 978-5-4437-0911-6 © Novosibirsk State University, 2019

III

Conference Chair

Alexander Marchuk
A.P. Ershov Institute of Informatics Systems &

Novosibirsk State University

Novosibirsk, Russia

Steering Committee

Kim Guldstrand Larsen

Aalborg University, Denmark

Bertrand Meyer

ETH, Zurich, Switzerland & Innopolis University,

Kazan, Russia

Vladimiro Sassone

University of Southampton, Great Britain

Michael Gerard Hinchey

Limerick, Ireland

Sriram Rajamani

Microsoft Research India

Program Committee Chairs

Nikolaj Bjørner

Microsoft Research, Redmond, USA

Irina Virbitskaite

A.P. Ershov Institute of Informatics Systems & Novosibirsk State University, Novosibirsk, Russia

Andrei Voronkov

University of Manchester, Great Britain

Keynote Speakers

Moshe Vardi
Rice University, USA

Sören Auer
Leibniz Information Centre for Science and Technology and University Library, Germany

Joost-Pieter Katoen
Aachen University, Germany

Marta Kwiatkowska
Oxford University, UK

Margus Veanes
Microsoft Research, Redmond, USA

http://people.cs.aau.dk/~kgl/
http://se.ethz.ch/~meyer/
https://www.ecs.soton.ac.uk/people/vs
https://www.lero.ie/people/mike-hinchey
https://www.microsoft.com/en-us/research/people/sriram/
https://www.microsoft.com/en-us/research/people/nbjorner/
http://persons.iis.nsk.su/en/person/virbitskaite
http://voronkov.com/
https://www.cs.rice.edu/~vardi/
https://vivo.tib.eu/fis/display/n0000-0002-0698-2864
http://www-i2.informatik.rwth-aachen.de/~katoen/
http://www.cs.ox.ac.uk/marta.kwiatkowska/
https://www.microsoft.com/en-us/research/people/margus/

IV

Program Committee Members

Farhad Arbab, CWI and Leiden University, The Netherlands

David Aspinall, Edinburgh University, Scotland

Marcello M. Bersani, Politecnico di Milano, Italy

Leopoldo Bertossi, Carleton University, Canada

Andrea Calì, London University, UK

Marsha Chechik, Toronto University, Canada

Volker Diekert, Stuttgart University, Germany

Salvatore Distefano, Messina University, Italy

Nicola Dragoni, Technical University of Denmark, Denmark

Schahram Dustdar, TU Wien, Austria

Dieter Fensel, STI Innsbruck, Austria

Carlo A. Furia, Università della Svizzera Italiana, Italy

Sergei Gorlatch, Muenster University, Germany

Arie Gurfinkel, Carnegie Mellon University, USA

Konstantin Korovin, Manchester University, UK

Maciej Koutny, Newcastle University, UK

Laura Kovács, Vienna University of Technology, Austria

Manuel Mazzara, Innopolis University, Russia

Klaus Meer, Brandenburg University of Technology Cottbus–Senftenberg, Germany

Torben Ægidius Mogensen, DIKU, Denmark

Peter D. Mosses, Swansea University, UK

José Ramón Paramá Gabía, University of A Coruña, Spain

Wojciech Penczek, Institute of Computer Science PAS, Poland

Alexander Petrenko, Institute for System Programming, Russia

Qiang Qu, SIAT, China

Wolfgang Reisig, Humboldt-University of Berlin, Germany

Andrei Sabelfeld, Chalmers University of Technology, Sweden

Davide Sangiorgi, Bologna University, Italy

Cristina Seceleanu, Mälardalen University, Sweden

Natalia Sidorova, Technical University Eindhoven, The Netherlands

Giancarlo Succi, Innopolis University, Russia

Mark Trachtenbrot, Holon Institute of Technology, Israel

https://homepages.cwi.nl/~farhad/
http://homepages.inf.ed.ac.uk/da/
https://sites.google.com/site/marcellombersani/
http://people.scs.carleton.ca/~bertossi/
https://www.dcs.bbk.ac.uk/about/people/academic-staff/andrea/
http://www.cs.toronto.edu/~chechik/
http://www.fmi.uni-stuttgart.de/ti/team/diekert/
https://www.theinternetofthings.eu/salvatore-distefano
http://www2.imm.dtu.dk/~ndra/WebNic/Home.html
http://www.infosys.tuwien.ac.at/Staff/sd/
https://www.sti-innsbruck.at/about/team/details/dieter-fensel
http://bugcounting.net/
https://www.uni-muenster.de/PVS/mitarbeiter/gorlatch.html
https://insights.sei.cmu.edu/author/arie-gurfinkel/
http://www.cs.man.ac.uk/~korovink/
https://www.ncl.ac.uk/computing/people/profile/maciejkoutny.html#background
http://forsyte.at/people/kovacs/
https://university.innopolis.ru/en/about/teaching-composition/manuel-mazzara/
https://www.b-tu.de/fg-theoretische-informatik/
http://hjemmesider.diku.dk/~torbenm/
http://www.cs.swan.ac.uk/~cspdm
http://coba.dc.fi.udc.es/~parama
http://www.ipipan.waw.pl/~penczek/
http://panda.ispras.ru/~petrenko/
http://english.siat.cas.cn/SI2017/IPR2017/RC7/CIB/Researchers1/201707/t20170719_180059.html
https://www2.informatik.hu-berlin.de/top/en/www/mitarbeiter/wolfgang_reisig
http://www.cse.chalmers.se/~andrei/
http://www.cs.unibo.it/sangio/
http://www.es.mdh.se/staff/173-Cristina_Seceleanu
http://www.win.tue.nl/~sidorova/
https://university.innopolis.ru/en/about/teaching-composition/giancarlo-succi/
http://www.hit.ac.il/en/faculty_staff/Mark_Trakhtenbrot

V

Additional Reviewers

Angele, Kevin

Beecks, Christian

Blanck, Jens

De Masellis, Riccardo

Di Iorio, Angelo

Enoiu, Eduard Paul

Fey, Florian

Huaman, Elwin

Jaroszewicz, Szymon

Khazeev, Mansur

Knapik, Michaɫ

Kumar, Vivek

Kunnappilly, Ashalatha

Kuznetsov, Sergei O.

Mahmud, Nesredin

Panasiuk, Oleksandra

Robillard, Simon

Silva-Coira, Fernando

Sourdis, Ioannis

Spina, Cinzia Incoronata

Teisseyre, Pawe

Tomak, Juri

Zubair, Adam

VI

Author’ Index

Agafontsev, Mikhail 290

Alahakoon, Damminda 118

Alexandrov, Ilia 313

Andreyeva, Tatiana 6

Anureev, Igor 17

Auer, Sören 1

Avdeenko, Tatiana 272

Baar, Thomas 31

Bakaev, Maxim 46, 66

Bondarenko, Vladislav 304

Borovikova, Olesya 337

Boulanger, Frédéric 329

Bozhenkova, Elena 81

Budnikov, Konstantin 95

De Silva, Daswin 118

Emelyanov, Pavel 236

Fensel, Dieter 281

Filkov, Alexander 290

Firsov, Artemiy 103

Garanina, Natalia 17

Goltsova, Ekaterina 46

Gorlatch, Sergei 17

Hernandez, Armando 329

Holzknecht, Omar 281

Kasimov, Denis 225

Kasymov, Denis 290

Katoen, Joost-Pieter 2

Khvorostov, Vladimir 46, 66

Kleyko, Denis 118

Klimenko, Olga A. 134

Klimiankou, Yauhen 141

Kobalo, Nikolay 151

Kondratyev, Dmitry 162, 172

Korobko, Anna 186

Korovina, Margarita 197

Kratov, Sergey 210

Krayneva, Irina 216

Krishna, Madhava 236

Kuchuganov, Aleksandr 225

Kuchuganov, Valeriy 225

Kudinov, Oleg 197

Kulikov, Alexander 151

Kulkarni, Vadiraj 236

Kurochkin, Alexander 95

Kwiatkowska, Marta 3

Kärle, Elias 281

Liakh, Tatiana 17

VII

Markov, Sergey 313

Martynov, Pavel 290

Maryasov, Ilya 162

Metus, Anna 186

Mikheev, Yuriy 251

Mogensen, Torben Ægidius 263

Murtazina, Marina 272

Nandy, S.K. 236

Nepomniaschy, Valery 162

Osipov, Evgeny 118

Panasiuk, Oleksandra 281

Pankratenko, Georgiy 313

Perminov, Vladislav 290

Ponomaryov, Denis 236

Popova-Zeugmann, Louchka 81

Prohanov, Sergey 290

Promsky, Alexei 172

Raha, Soumyendu 236

Razumnikova, Olga 46

Reyno, Vladimir 290

Rozov, Andrei 17

Rublev, Vadim 304

Savchenko, Valeriy 313

Sorokin, Konstantin 313

Spiridonov, Alexander 313

Taha, Safouan 329

Titov, Igor 103, 151

Todorov, Vassil 329

Troshkov, Sergey 216

Vardi, Moshe 4

Veanes, Margus 5

Virbitskaite, Irina 81

Volkov, Alexander 313

Vyatkin, Valeriy 118

Wiklund, Urban 118

Zagorulko, Yury 337

Zakharov, Oleg 290

Zelenov, Sergey 348

Zelenova, Sophia 348

Zyubin, Vladimir 17

VIII

Preface

PSI is the premier international forum in Russia for academic and industrial researchers, developers, and users

working on topics relating to computer, software and information sciences. The conference serves to bridge the gaps

between different communities whose research areas are covered by but not limited to foundations of program and

system development and analysis, programming methodology and software engineering, and information technologies.

The previous eleven PSI conferences were held in 1991, 1996, 1999, 2001, 2003, 2006, 2009, 2011, 2014, 2015,

and 2017 and proved to be significant international events. Traditionally, the PSI offers a program of keynote lectures,

presentations of contributed papers and workshops complemented by a social program reflecting the amazing diversity

of Russian culture and history.

The PSI conference series is dedicated to the memory of a pioneer in theoretical and system programming

research, Academician Andrei Petrovich Ershov (1931–1988). Andrei Ershov graduated from Moscow State University

in 1954. He began his scientific career under the guidance of Professor Lyapunov, supervisor of his PhD thesis.

A.P. Ershov worked at the Institute of Precise Mechanics and Computing Machinery; later, he headed the Theoretical

Programming Department at the Computing Center of the USSR Academy of Sciences in Moscow. In 1958, the

Department was reorganized into the Institute of Mathematics of the Siberian Branch of the USSR Academy of

Sciences, and at the initiative of the Academician S.L. Sobolev, Andrei Ershov was appointed as head of this

department, which later became part of the Computing Center in Novosibirsk Akademgorodok. The first important

project of the Department was the development of the ALPHA system, an optimizing compiler for an Algol 60

extension implemented on the Soviet computer M-20. Later, the researchers of the Department created the Algibr,

Epsilon, Sigma, and Alpha-6 programming systems for the BESM-6 computers. Their achievements include the first

Soviet time-sharing system AIST-0, multi-language system BETA, research projects in artificial intelligence and

parallel programming, integrated tools for text processing and publishing, and many others. A.P. Ershov led these

projects and participated in them. In 1974, he was nominated as a Distinguished Fellow of the British Computer

Society. In 1981, he received the Silver Core Award for the services rendered to IFIP. Andrei Ershov's brilliant

speeches were always in the focus of public attention. Especially notable was his lecture "The Aesthetic and Human

Factor in Programming" presented at the AFIPS Spring Joint Computer Conference in 1972.

This edition of the conference has attracted 70 submissions from 15 countries. We wish to thank all the authors

for their interest in PSI 2019. Each submission was reviewed by three experts, with at least two of them being from the

same or closely related discipline as the authors. The reviewers generally provided high quality assessment of the

papers and often gave extensive comments to the authors so that the contributions could be improved. As a result, the

Program Committee has selected 9 high-quality papers as regular talks, 9 papers as short talks, 3 papers as system and

experimental talks, and 8 posters for presentation at the conference. Five keynote talks given by prominent computer

scientists from various countries cover a range of hot topics in computer science and informatics.

We are glad to express our gratitude to all the people and organizations who have contributed to the conference:

the authors of all the papers for their effort in producing the materials included here; the sponsors for their moral,

financial and organizational support; the Steering Committee members for their coordination of the conference; the

Program Committee members and reviewers for doing their best to review and select the papers, and the Organizing

Committee members for their contribution to the success of this event and its great cultural program.

The Program Committee work was done using the EasyChair conference management system.

June, 2019 Nikolaj Bjørner

Irina Virbitskaite

Andrei Voronkov

Contents

Towards Knowledge Graph Based Representation, Augmentation and Exploration of Scholarly Communication 1

Soren Auer

On Termination of Probabilistic Programs... 2

Joost-Pieter Katoen

Safety verification for deep neural networks with provable guarantees ... 3

Marta Kwiatkowska

Automated-Reasoning Revolution: From Theory to Practice and Back .. 4

Moshe Vardi

The Power of Symbolic Automata and Transducers .. 5

Margus Veanes

Automated Correctness Checking in Education ... 6

Tatiana Andreyeva

Two-Step Deductive Verification of Control Software Using Reflex .. 17

Igor Anureev, Natalia Garanina, Tatiana Liakh, Andrei Rozov, Vladimir Zyubin and Sergei Gorlatch

A Metamodel-based Approach for Adding Modularization to KeYmaera's Input Syntax .. 31

Thomas Baar

Data Compression Algorithms in Analysis of UI Layouts Visual Complexity .. 46

Maxim Bakaev, Ekaterina Goltsova, Vladimir Khvorostov and Olga Razumnikova

Case-Based Genetic Optimization of Web User Interfaces .. 66

Maxim Bakaev and Vladimir Khvorostov

Causality-Based Testing in Time Petri Nets .. 81

Elena Bozhenkova, Irina Virbitskaite and Louchka Popova-Zeugmann

Software simulation of the information web-system with regulation of access to Internet content 95

Konstantin Budnikov and Alexander Kurochkin

Inter-country competition and collaboration in the miRNA science field .. 103

Artemiy Firsov and Igor Titov

Distributed Representation of n-gram Statistics for Boosting Self-Organizing Maps with Hyperdimensional

Computing .. 118

Denis Kleyko, Evgeny Osipov, Daswin De Silva, Urban Wiklund, Valeriy Vyatkin and Damminda

Alahakoon

Use of color for arrangement of web publication of science news on the corporate site of the Siberian Branch

 of Russian Academy of Sciences .. 134

Olga A. Klimenko

Rapid Instruction Decoding for IA-32 ... 141

Yauhen Klimiankou

Prediction of RNA Secondary Structure Based on Optimization in the Space of Its Descriptors by the

 Simulated Annealing Algorithm ... 151

Nikolay Kobalo, Alexander Kulikov and Igor Titov

Towards Automatic Deductive Verification of C Programs Over Linear Array .. 162

Dmitry Kondratyev, Ilya Maryasov and Valery Nepomniaschy

Automated Sisal program verification with ACL2 .. 172

Dmitry Kondratyev and Alexei Promsky

The Analitical Object Model as a Base of Heterogeneous Data Integration .. 186

Anna Korobko and Anna Metus

Computable Topology for Reliable Computations ... 197

Margarita Korovina and Oleg Kudinov

About Leaks of Confidential Data in the Process of Indexing Sites by Search Crawlers .. 210

Sergey Kratov

Archival Information Systems: New Opportunities for Historians .. 216

Irina Krayneva and Sergey Troshkov

A Logical Approach to the Analysis of Aerospace Images .. 225

Valeriy Kuchuganov, Denis Kasimov and Aleksandr Kuchuganov

Parallel Factorization of Boolean Polynomials .. 236

Vadiraj Kulkarni, Pavel Emelyanov, Denis Ponomaryov, Madhava Krishna, Soumyendu Raha and
S. K. Nandy

The measure of regular relations recognition applied to the supervised classification task 251

Yuriy Mikheev

Hermes: A Reversible Language for Writing Encryption Algorithms (Work in Progress) .. 263

Torben Ægidius Mogensen

An Ontology-based Approach to the Agile Requirements Engineering ... 272

Marina Murtazina and Tatiana Avdeenko

Verification and Validation of Semantic Annotations ... 281

Oleksandra Panasiuk, Omar Holzknecht, Umutcan Simsek, Elias Karle and Dieter Fensel

Improvement of Firebrand Tracking and Detection Software.. 290

Sergey Prohanov, Denis Kasymov, Oleg Zakharov, Mikhail Agafontsev, Vladislav Perminov, Pavel Martynov,

Vladimir Reyno and Alexander Filkov

The editor for teaching the proof of statements for sets ... 304

Vadim Rublev and Vladislav Bondarenko

Nobrainer: an Example-driven Framework for C/C++ Code Transformations .. 313

Valeriy Savchenko, Konstantin Sorokin, Georgiy Pankratenko, Sergey Markov, Alexander Spiridonov,

 Ilia Alexandrov and Alexander Volkov

Deductive proof for industrial applications .. 329

Vassil Todorov, Safouan Taha, Frederic Boulanger and Armando Hernandez

Providing the sharing of heterogeneous ontology design patterns in the development of ontologies of scientific

subject domains .. 337

Yury Zagorulko and Olesya Borovikova

Effective Scheduling of Strict Periodic Task Sets with Given Permissible Periods in RTOS 348

Sergey Zelenov and Sophia Zelenova

1

Towards Knowledge Graph Based Representation, Augmentation and
Exploration of Scholarly Communication

Sören Auer

Leibniz Information Centre for Science and Technology and University Library, Germany

Despite an improved digital access to scientific publications in the last decades, the fundamental
principles of scholarly communication remain unchanged and continue to be largely document-based. The
document-oriented workflows in science have reached the limits of adequacy as highlighted by recent
discussions on the increasing proliferation of scientific literature, the deficiency of peer-review and the
reproducibility crisis. We need to represent, analyse, augment and exploit scholarly communication in a
knowledge-based way by expressing and linking scientific contributions and related artefacts through
semantically rich, interlinked knowledge graphs. This should be based on deep semantic representation of
scientific contributions, their manual, crowd-sourced and automatic augmentation and finally the intuitive
exploration and interaction employing question answering on the resulting scientific knowledge base. We
need to synergistically combine automated extraction and augmentation techniques, with large-scale
collaboration to reach an unprecedented level of knowledge graph breadth and depth. As a result,
knowledge-based information flows can facilitate completely new ways of search and exploration. The
efficiency and effectiveness of scholarly communication will significant increase, since ambiguities are
reduced, reproducibility is facilitated, redundancy is avoided, provenance and contributions can be better
traced and the interconnections of research contributions are made more explicit and transparent. In this
talk we will present first steps in this direction in the context of our Open Research Knowledge Graph
initiative and the ScienceGRAPH project.

2

On Termination of Probabilistic Programs
Joost-Pieter Katoen

Aachen University, Germany

Program termination is a key question in program verification. This talk considers the termination of
probabilistic programs, programs that can describe randomised algorithms and more recently received
attention in machine learning. Termination of probabilistic programs has some unexpected effects. Such
programs may diverge with zero probability; they almost-surely terminate (AST). Running two AST-
programs in sequence that both have a finite expected termination time -- so-called positive AST -- may
yield an AST-program with an infinite termination time (in expectation). Thus positive AST is not
compositional with respect to sequential program composition. This talk discusses that proving positive
AST (and AST) is harder than the halting problem, shows a powerful proof rule for deciding AST, and
sketches a Dijkstra-like weakest precondition calculus for proving positive AST in a fully compositional
manner.

3

Safety verification for deep neural networks with provable guarantees

Marta Kwiatkowska

University of Oxford, USA

Deep neural networks have achieved impressive experimental results in image classification, but can
surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input
image that cause the network to misclassify it. With potential applications including perception modules
and end-to-end controllers for self-driving cars, this raises concerns about their safety. This lecture will
describe progress with developing automated verification and testing techniques for deep neural networks
to ensure safety and security of their classification decisions with respect to input manipulations. The
techniques exploit Lipschitz continuity of the networks and aim to approximate, for a given set of inputs,
the reachable set of network outputs in terms of lower and upper bounds, in anytime manner, with
provable guarantees. We develop novel algorithms based on feature-guided search, games and global
optimisation, and evaluate them on state-of-the-art networks. We also develop foundations for
probabilistic safety verification for Gaussian processes, with application to neural networks.

The lecture will be based on the following publications:

1. X. Huang, M. Kwiatkowska, S. Wang and M. Wu, Safety Verification of Deep Neural
Networks. In Proc. 29th International Conference on Computer Aided Verification (CAV), pages
3-29, LNCS, Springer, 2017.

2. W. Ruan, X. Huang, and M. Kwiatkowska. Reachability Analysis of Deep Neural Networks
with Provable Guarantees. In Proc. 27th International Joint Conference on Artificial
Intelligence (IJCAI'18), pages 2651-2659, 2018.

3. M. Wicker, X. Huang, and M. Kwiatkowska. Feature-Guided Black-Box Safety Testing of Deep
Neural Networks. In Proc. 24th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2018), pages 408-426. Springer, 2018.

4. M. Wu, M. Wicker, W. Ruan, X. Huang and M. Kwiatkowska. A Game-Based Approximate
Verification of Deep Neural Networks with Provable Guarantees. Accepted to Theoretical
Computer Science subject to revisions. CoRR abs/1807.03571 (2018)

5. L. Cardelli, M. Kwiatkowska, L. Laurenti, A. Patane. Robustness Guarantees for Bayesian
Inference with Gaussian Processes. In Proc. AAAI 2019. To appear, 2019.
 CoRR abs/1809.06452 (2018)

4

Automated-Reasoning Revolution: From Theory to Practice and Back
Moshe Vardi

Rice University, USA

For the past 40 years computer scientists generally believed that NP-complete problems are intractable. In
particular, Boolean satisfiability (SAT), as a paradigmatic automated-reasoning problem, has been
considered to be intractable. Over the past 20 years, however, there has been a quiet, but dramatic,
revolution, and very large SAT instances are now being solved routinely as part of software and hardware
design. In this talk I will review this amazing development and show how automated reasoning is now an
industrial reality.

I will then describe how we can leverage SAT solving to accomplish other automated-reasoning tasks.
Sampling uniformly at random satisfying truth assignments of a given Boolean formula or counting the
number of such assignments are both fundamental computational problems in computer science with
applications in software testing, software synthesis, machine learning, personalized learning, and more.
While the theory of these problems has been thoroughly investigated since the 1980s, approximation
algorithms developed by theoreticians do not scale up to industrial-sized instances. Algorithms used by
the industry offer better scalability, but give up certain correctness guarantees to achieve scalability. We
describe a novel approach, based on universal hashing and Satisfiability Modulo Theory, that scales to
formulas with hundreds of thousands of variables without giving up correctness guarantees.

5

The Power of Symbolic Automata and Transducers
Margus Veanes

Microsoft Research, Redmond, USA

Symbolic automata and transducers extend finite automata and transducers by allowing transitions to
carry predicates and functions over rich alphabet theories, such as linear arithmetic. Therefore, these
models extend their classic counterparts to operate over infinite alphabets, such as the set of rational
numbers. Due to their expressiveness, symbolic automata and transducers have been used to verify
functional programs operating over lists and trees, to prove the correctness of complex implementations
of BASE64 and UTF encoders, and to expose data parallelism in computations that may otherwise seem
inherently sequential. In this talk, I give an overview of what is currently known about symbolic automata
and transducers as well as their variants. We discuss what makes these models different from their finite-
alphabet counterparts, what kind of applications symbolic models can enable, and what challenges arise
when reasoning about these formalisms. Finally, I present a list of open problems and research directions
that relate to both the theory and practice of symbolic automata and transducers.

6

Automation of Correctness Checking in Education

Tatiana A. Andreyeva [0000-0002-1124-9499]

The A. P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences

6, Lavrentiev st., Novosibirsk, Russian Federation, 630090
ata@iis.nsk.su

Abstract. Having their origin in programming contests, now various systems
for automated checking of solutions become useful not only in programming
education. With their help, any teacher can organize a mini-contest or check
own tests and students’ works faster and easier. In order to attract a wider range
of users, all processes of both checking and preparation should be automated.
 The author extends the approach gained from own experience of using and
creating the automated checking systems for the programming problems onto
the automated checking of the non-programming problems.
 The article discusses the structure of a problem, studies various approaches to
automated checking, introduces problem complexes, suggests methods for cre-
ating accurate and consistent problem statements and check sets, and touches
the automation of the preparation and checking processes.

Keywords: Automated Correctness Checking, Test Case Generation, Complex
Information Systems.

Acknowledgements. The work is supported by the Russian Foundation for Ba-
sic Research grant RFBR № 18-07-01048

Introduction

Systems for the automated checking of solutions originate from programming con-
tests. But today they become the means of automation of the teacher’s work. They can
be useful not only at programming classes. With their help, any teacher can organize a
mini-contest or check own tests and students’ works faster and easier.
 But systems for automated checking also make additional demands to the contest
problems. This requires a higher discipline from authors of all parts of a contest prob-
lem. To eliminate difficulties, the processes of preparation to the automated check-up
should also be automated. The special system for the automated preparation of prob-
lem complexes can reduce the number of possible errors, ambiguities, and inconsis-
tencies, especially if the problem’s description, specifications, the check set, and the
exemplar solution are created collegially.
 To create full, explicit and consistent problems (not only for contests with auto-
mated checking of solutions but for all quizzes as well) it is necessary to realize that a

7

2

problem is a union of a statement, specifications and checking means. Thus we intro-
duce the important notion of the problem complex.
 To understand the structure of a proper system for the automated preparation of
problem complexes, we thoroughly consider what a generalised problem, its solution
and results are, how a solution method can be automatically checked, and how the
number of check cases and the check approach depend on the amount and the type of
the problem’s variable and constant data, conditions, and restrictions.
 Also, we touch some questions of the automated generation of check cases.

1 Problem, Solution and Result

The common-sense point of view that to solve a problem means to find a correct an-
swer is obviously inacceptable since a wrong method of solution can entail a wrong
answer. Moreover, the method can be the main point of the solution not only in pro-
gramming but in other fields too. For example, in IQ tests [8], an often task is “find
out the rule and then apply it”.
 Now, let a problem be represented by a triad < D, C, R >, where D is known data,
C is conditions necessary for creating a correct solution and obtaining a correct result,
and R is unknown values to be found out during solving. Then the solving method M
is a function, which creates the result R from the initial data D and conditions C:

М: D C R

Solution method is a sequence of inter-connected and inter-dependable components
(R1, … RN); each stage Ri is derived from stages R[0…i - 1] by a step of method Mi. The
whole method M is thus a sequence of solution steps (M1, … MN).
 The sequence (R1, … RN) is not bound to be strictly linear, on the contrary, in most
cases it only can be depicted by a graph structure where vertices are stages Ri
(i = 0 .. N) and oriented edges are steps Mi (i = 1 .. S).
 Each shift Mi from Ri to Ri+1 can be converted into a subproblem and, thus, we can
split the initial problem into several interconnected subproblems. The use of this point
of view is studied in [4]. Here also lies the possibility of a partially parallel execution.

2 Correctness and Checking

Now that we agree that to solve a problem is to find a correct solution method, let us
focus at the correctness of this method.

2.1 Equivalent Methods

A problem may have several correct solution methods. For example, in order to find
the greatest common divisor (G. C. D.) of two natural numbers, one can either use the
Euclidean algorithm or find all natural devisors for both numbers separately (by try-
ing to divide them by each natural), compare these sets of divisors, and find the great-

8

3

est common one. Both of these methods correctly solve the initial problem but differ
in the efficiency.1
 Let us call two methods M′ and M′′ equivalent if being applied to the same input
data D they produce the same result R.

2.2 What Is a Correct Method?

The most reliable way to check whether a method is correct is to prove that it solves
the initial problem. Still, this way is too laborious to be exploited for mass checking.
In education, we are in the situation of multiple methods to be checked in a short time
and, thus, our aim is to reduce teacher’s time and efforts. And the best way leading to
automation of the checking process is to change the notion correct.
 Suggesting students a problem in a test, teacher always has at least one “correct”
solution method of this problem. This method we call exemplar and believe that it is
actually correct. Here we should mention that proving the exemplar method’s correct-
ness might cause difficulties for teachers or contest organisers; and we have multiple
examples when a wrong or incomplete exemplar solution was declared correct and the
really correct ones were erroneously declined.
 Nonetheless, henceforth we call method M correct if it is equivalent to the exem-
plar method Mex. Thus we shift from checking of the correctness to checking of the
equivalence.
 To make the matter more intricate, there is a situation with multiple correct an-
swers (refer to Section 3.1). In this case, the exemplar method should provide all pos-
sible correct results while the method under examination may produce only one of
them. So, the equivalence should be not between two methods M and Mex but between
method M and only a sub-method of method Mex .
 A good way to eliminate teacher’s errors can be proposed by a profoundly devel-
oped information system intended for automating the preparation of problem cases,
which will be discussed later in Section 4.

2.3 Checking

Let us discuss the equivalence check-up suitable for the educational purposes.
 Since equivalent methods must produce the same outcomes (see sections 2.1 and
2.2), it is sufficient to check whether the result produced by the method under exami-
nation coincides with the exemplar outcome which is the result produced by the ex-
emplar method.
 This approach ascends to the theory of so called Black-box testing introduced by
Ashby in 1956 [6] and well developed for programming (see, for example, [6, 7 or

1 If it is important that the solution method be a particular one, the author of the problem can

shift the focus from the result to the method itself: not “Find the G.C.D. of two naturals” but
“Describe the Euclidean algorithm of finding the G.C.D.” In this new problem, what earlier
was a method (one of several possible ones) became the only correct result.

9

4

13]); we shall try to adopt some of its methods for developing the theory of automated
checking in education.

3 Practicable Input and Output

The exemplar outcome is the result of applying the exemplar method to some exem-
plar initial data. Now let us discuss the number of these.

3.1 Power of the Output

The number of all possible correct answers |R| is very important for our discussion of
automation of checking. Here we only mention the possible variants. And the influ-
ence of the multiplicity of possible correct answers onto the checking process is dis-
cussed in Section 3.4.

|R| = 0 means that the problem is stated erroneously. No correct answer is possible.
Such problems must not appear in any test, quiz or contest.

|R| = 1 means that there exists the only solution. In this case, checking is obvious and
easy: it is sufficient to ascertain that the retrieved outcome coincides with the given
exemplar one.

|R| > 1 means that the problem has several correct answers. There can be three cases:
 |R| is finite. For example, “The anterior part of a shoulder is called a collar

bone or a clavicle”.
 |R| is infinite but denumerable. For example, “Any odd integer”.
 |R| is infinite and non-denumerable. For example, “Any real value from the in-

terval [0 .. 1]” or “Any point on the plane within the circle with the centre in
(0, 0) and radius 1”.

Let us note that restrictions of the computer data representation obviously reduce the
case of infinite (denumerable or non-denumerable) |R| to the case of finite |R| > 1.
The only difference between them is in approaches to automated checking.

3.2 Power and Dimension of the Input

Variables and Constants. Domain D of all known data can be divided into two parts:
invariables Dinv and variables Dvar. Invariable data are stated in the problem’s de-
scription and never change. On the contrary, variable data are provided during check-
ing and can differ not only in value but in number too.
 So, the power | Dvar | can vary, and the power | Dinv | is constant. And the power of
the whole domain D is their sum:

| D | = | Dvar | + | Dinv |.

10

5

No Variables. Obviously, there exist problems with no variable input. Almost all
non-programming problems are like this. In this case, power | Dvar | = 0.
 If such a problem is correctly stated, it must have the unique correct answer. As a
rule, if there are several correct answers, it means that the problem description is not
full or consistent.2

Variables as the Means to Split a Problem. In programming, any “good” algorithm
has to be mass-oriented, i.e., it must be potent to solve not a single problem but a
whole class of similar problems. Therefore, presence of a variable input is characteris-
tic for programming problems.
 Still, problems with variable input can be met not only in programming but in other
fields too. For example, several variants of a quiz may include the same task with
different numeric values.3
 If there are several variables V1, … VN, each of them having its own domain Di;
then the whole variable domain Dvar can be represented as a direct product of these
domains:

Dvar = [D1× …× DN].

The dimension of the domain Dvar is the sum of dimensions of D1, … DN :

dim Dvar = dim D1 + …+ dim DN

We can make a section of the domain Dvar by taking an actual value for each variable.
With thus restricted input domain, the initial problem turns into a problem with no
variables. Thus, we can reduce a problem with a variable input to a problem with the
invariable input.

Constant and Known Number of Variables. Now let us consider one variable Vi .
The dimension of its domain can vary in a wide range from 1 to any value having the
practical sense. Multidimensional input is common in programming, where the di-
mension denotes the number of variable’s components.

Constant Bounds. As a rule, the lower and upper bounds for possible dimensions of a
variable’s domain are specified explicitly for all variables in the problem’s descrip-
tion; they are known before the checking process has started. They can be considered
as constants belonging to the invariable input Dinv .

Variable Bounds. The bounds of a variable can also vary. Then they belong to Dvar
and must have bounds too. Let us call the changeable bound the sub-bound.
 An example of such a situation is “N integers A1, …, AN are given (1< N < 100)…”
Here variable A consists of N components A1, … AN and, therefore, its dimension

2 Various faults of problem statements are studied in [5].
3 In such a case, each variant can be checked as an independent one and, therefore, can repre-

sent the single-answer case.

11

6

dim A = N. Variable N is the sub-bound of the current dimension, and 100 is the in-
variable upper bound common for all possible sub-bounds. Note that each Ai must
have its own upper and lower limits too, but none are mentioned in this example.
 So, the sub-bound is variable but becomes known when the check starts.

Indefinite Number of Variables. Now let us consider the case when the actual di-
mension of a variable’s domain (the sub-bound) stays unknown until the end of
checking.
 Example is “No more than 100 integers are given…” Here we do not know how
many components A1, … AN the actual input has. We can preliminary write all of them
down and count them; then we will know the current sub-bound N (not given but
calculated). Thus, we return to the case of a known sub-bound. On the other hand, we
can process these components not using the value of N at all. The difference can be
illustrated by cycles

for 1 to N do… and do… until <the end is detected>

Another example of the situation when the number of variables must be retrieved
from the input is “A graph is specified by the list of its edges, which are pairs of ver-
tex numbers”.
 Theoretically both the number of variants and their range can be infinite. Nonethe-
less, practically it is impossible due to restrictions of checking and computer represen-
tation.

3.3 Exemplar Input and Output

To check solutions automatically, we must have the exemplar input and the exemplar
output.
 Even in the case of finite domain D, it is too generous to check all of its members
(which are the problem’s possible valid inputs). It is sufficient to apply the exemplar
method only to some characteristic representatives.

Partial Cases. Domain D of all valid inputs can be split into equivalence classes.
 Input data belong to the same equivalence class if being processed by the exemplar
method they generate the same (or equivalent) outcomes. Each equivalence class is
considered to be a partial case. Only one representative from each partial case is suf-
ficient for the exemplar input.4
 Unlike Beizer [7] or Myers [11, 12] who apply the equivalence partition to the
domain of all possible inputs (and, thus, the affiliation with an equivalence class only
shows whether a variable belongs to the valid range), we consider the domain of all
valid inputs.

4 For more details, see, for example, [7, 11 or 12].

12

7

Restriction of the Input. If domain D is infinite (refer to Section 3.2) then some (or
even all) of the equivalence classes can be infinite too. If the number of classes is
finite, getting one representative from each class forms a finite set of exemplar inputs.
 Still, there can be infinite number of equivalence classes. To lessen this number,
additional restrictions should be imposed on the domain of valid input data.

Automation. The partition of the domain D into equivalence classes can be done
manually basing on the characteristics of the subject domain and the problem itself or
automatically through the inner properties of the exemplar method. Still, the thorough
discussion of this question is the topic of another article.

Check Cases. Having an exemplar method, one can trace all partial cases it proc-
esses. Since all inputs from an equivalence class are interchangeable, the representa-
tives can be selected randomly.
 Let a check case be a pair of some exemplar input and the corresponding exemplar
output. We refer to a pack of check cases as a check set. Here we follow the analogy
with test cases and test sets in programming.5
 A check case is a set of points representing a section of domain D. Therefore, a
check case is a sub-problem of the initial problem where all variables in the D, C and
R have actual values.

3.4 Checking and Judging

The next step is to compare the acquired output with the corresponding exemplar
output or the exemplar outcome.

|R| is Finite. If the problem admits only finite number of correct answers, the com-
parison can be easily performed by verifying the coincidence. In this case, the exem-
plar outcome should consist of one or several exemplar outputs. Let us also note that a
poly-dimensional output brings almost no difference into the result-checking proce-
dure.

|R| is Infinite. This case is more difficult. We cannot practically list all possible out-
puts; therefore, the “comparison” should mean performing a special checking for-
mula, which depends on the type of the valid outputs. For example, we can ascertain
that “a real Z belongs to the [0..100] interval” by checking that both Z ≥ 0 and
Z ≤ 100 are true.
 A poly-dimensional output can demand more complex formulas. For example, the
result “a point on a plain with coordinates (x, y) belongs to the circumference with the
center in (0, 0) and radius A” can be checked with the help of the pair of inequations

5 Mostly, experts in programming (see, for example, [11, 12, 14, 15]) use the term test suite to

name a pack of test cases. Still, ISO/IEC/IEEE 24765:2010 International Standard – Sys-
tems and software engineering – Vocabulary [10] does not mention this word at all. Instead,
it uses the test set (3.3091). So we use check set as the synonym of check suite too.

13

8

A2 – e ≤ x2 + y2 ≤ A2+ e, where e is an admissible (and strictly specified in the prob-
lem’s description) error.
 If the author of the problem would rather avoid such difficulties, the problem’s
statement should be revised and the type of the output changed.

Judging. If the acquired output coincides with the example output (when |R| if finite)
or meets the differently stated conditions (when |R| if infinite), the check case result is
correct. Otherwise, it is incorrect.
 After all check cases are processed, a judgment about the correctness of the whole
method can be formed. And there are two ways for this.
 The first way is the dichotomy “all check case results are correct” vs. “at least
one check case result is incorrect”. The method is considered correct if and only if all
its check case results are correct.
 The second way is a gradation based upon the number of correct check case re-
sults. The metric for this gradation can be determined in various ways. For example,
in an equipollent metric, each check case gives 1 point or 100/n percents of the result.
On the other hand, in a weighted metric, check cases make different contributions to
the result. On this way, a method can be more correct or less correct than the other
method, according to their metric values.
 Judging about the correctness of a method under examination depends on the ex-
emplar outcome and, therefore, on the accurateness of the exemplar method and of the
coverage of all partial cases necessary for creating the exemplar input. For this reason,
it is important to automate as many processes of preparation to automated checking as
possible.

4 Automation

Let us look at a problem in the context of automated checking.

4.1 Problem Complexes

The problem complex should include (refer to [2] or [3]):
 Description of the problem
 Specifications of a valid input and output
 A check set, which is a pack of exemplar input-output pairs
 An exemplar solution method

The first and the second parts are “exterior”. Contestants may see them. The third and
the fourth parts, on the contrary, are for the inner use of checkers and judges only.

Problem’s Description. The full description of a problem must contain, explicitly or
implicitly, the following parts (for more details, refer to [5]):

 Introduction
 Definitions, agreements, terms, if necessary
 Statement. A formalized presentation of the problem, its conditions and restric-

tions

14

9

 Task. Requirements whose fulfilment means that the problem is solved
 Formats for the input and output data
 Example of a correctly written down solution and result

Specifications. Input and output data specifications, restrictions and clauses are speci-
fied in the problem’s description written in a natural language. A textual analysis can
automatically extract the preliminary specification list, which should be revised
manually [2, 3].

Check Set and Exemplar method were considered earlier in Sections 2.2 and 3.3.

4.2 Preparation of Problem Complexes

The process of preparing a problem complex is iterative: creating or changing each
part (see Section 4.1) can impel changes in any other parts.

Stage 1. According to the original idea of the problem, the author of the problem’s
description

 defines restrictions R on all variables in use;
 makes a preliminary decomposition D* of the valid input data domain D into

equivalence classes showing all possible partial cases;6
 sets specifications S for the input and output data.

Stage 2. From specifications S and decomposition D*, a check set CS is prepared.
This can be done manually or automatically with the help of an automated test-
preparing system (for more details, refer to [1]).

Stage 3. An exemplar solution ES is written (manually) and is debugged with the help
of the check set CS.
 To reduce the number of possible errors, it is recommended that problem com-
plexes are created collegially. If two authors А1 and А2 write two different exemplar
solutions ES1 and ES2 and use two check sets CS1 and CS2 for debugging, both of
them fulfil stages 1 to 3, and then Stage 4 arises.

Stage 4. Two check sets are compared and combined. Both solutions ES1 and ES2
must be tested on the united check set CS = CS1 U CS2. If no cross-errors were de-
tected, it is necessary to ascertain that this united check set agrees with the final de-
composition D and meets the final specifications S. Most likely, the united check set
CS will be superfluous; and, therefore, some surplus check cases should be excluded.
 The 4th stage can also be useful for the individual preparation of a problem com-
plex. The author’s initial check set and the automatically generated check set can be
treated as CS1 and CS2 .

6 On the very first stage, it is impossible to use the exemplar solution since it is not created yet.

15

10

4.3 Automated Systems for Preparation of Problem Complexes

Irrespectively to its actual correctness or erroneousness, the exemplar outcome is the
base for judging about correctness of the method under examination (see Sections 2.2
and 3.4). Therefore, it is important to eliminate the possibility of errors in the exem-
plar method and the exemplar outcome. And here an automated system for prepara-
tion of problem complexes (ASPPC) can be of great use. Such systems are described
in detail in [2, 3].

At Stage 1 (see Section 4.2), an ASPPC should
 Extract a preliminary set of specifications S0 from the description of the prob-

lem by means of the textual analysis
 Check the consistency of specifications
 Extract possible information about bounds, exceptional points and so on from

the problem’s description and specifications S0
 Construct a preliminary partition P of the valid data domain D into equiva-

lence classes (basing on the specifications S0 and additional information pro-
vided by the author(s) of the problem)

 Compare, join and intersect partitions P1 and P2

At Stage 2, an ASPPC should
 Create exemplar inputs basing on partition P
 Ascertain that the author’s check set CS0 covers partition P
 Verify that the check set CS0 meets specifications S0 and restrictions R

If the necessity to change the initial specification set S0 is detected, the process of
creating an exemplar check set should be started anew, now basing on the renewed
specification set S0

′.

At Stage 3, with the exemplar outputs generated with the help of the exemplar solu-
tion (method), an ASSPPC should

 Check that the exemplar outputs meet specifications S (which is the final ver-
sion of the specification set)

At Stage 4,
 Define the equivalent check cases
 Propose variants of reducing the joint check set

Conclusion

Our aim is to automate processes of preparing the problem complexes in any subject
field, in order to make the automated checking easier and its use wider.
 We have considered notions checking and correctness and have ascertained that
not only programming problems but problems from other subject fields too can be
checked automatically.

16

11

 We have studied processes that constitute the preparation of a contest or a quiz and
the check of their results and have shown which of these processes can be automated.
 We have shown that automated systems make the preparation of problem com-
plexes easier and more accurate, especially in case of co-working.
 The future aims of our work are:

 To design means for the coverage analysis of the partitions created automati-
cally from exemplar solutions,

 To develop the mathematical apparatus for operations with partitions of differ-
ent types,

 To create means that can suggest additional partition variants basing on the
analysis of the type, the power and the dimensions of the input data.

References

1. Andreyeva, T.: Automated generation of test sets. In: Science in the Modern Information
Society IX: Proceedings of the conference. North Charleston, USA, 1-2.08.2016. pp. 110-
112 (2016).

2. Andreyeva, T.: Automated preparation of problem complexes. In: Science today: Theoreti-
cal and practical aspects: Proceedings of the conference. Vologda, 27.12.2017. Part 1,
pp. 25-26 (2018). Available at http:/volconf.ru/files/archive/01_27.12.2017.pdf

3. Andreyeva, T.: Automated preparation of problem complexes for programming contests.
In: Science. Informatization. Technologies. Education XI: Proceedings of the international
scientific-practical conference. Ekaterinburg, 26.02-2.03.2018. (in Russian)
Available at the conference site http://nito.rsvpu.ru/files/nito2018/nito2018.pdf

4. Andreyeva, T.: Serial problems in programming. In: Perspectives of information systems
V. Educational informatics section. Proceedings of the international conference. Novosi-
birsk, pp. 2-4 (2003) (in Russian)

5. Andreyeva, T.: Structure and classification of contest problems’ texts. In: Computer in-
struments in education, 3-4, pp. 50-59 (2002). (in Russian).
Available at http://ipo.spb.ru/journal/index.php?magazines/2002/34/e/

6. Ashby, W. R.: Introduction to cybernetics. Chapman & Hall (1956).
7. Beizer, B.: Black-box testing: Techniques for functional testing of software and systems.

New York, NY, USA: John Wiley & Sons, Inc. (1995).
8. Eysenck, H. J.: Know your own I. Q. Penguin Books (1962).
9. Floyd, R. W.: Assigning meanings to programs. In: Mathematical Aspects of Computer

Science. Proceedings of Symposium on Applied Mathematics. 19. American Mathematical
Society. 19-32. (1967). ISBN 0821867288.

10. ISO/IEC/IEEE 24765:2010 International Standard. Systems and software engineering –
Vocabulary. IEEE. DOI:10.1109/IEEESTD.2010.5733835

11. Myers, G. J.: The art of software testing. New York: John Wiley & Sons (1979).
12. Myers, G. J., Badgett, T., Sandler C.: The art of software testing. (3rd ed.) New York: John

Wiley & Sons (2011).
13. Ponrod, C.: The study of black-box testing technique for collateral management system.

Mahidol University Press (2014).
14. Singh, Y.: Software testing. Cambridge University Press. (2012). Chapter 1.3.4.
15. Spillner, A., Linz, T., Schaefer, H.: Software testing fundamentals: A study guide for the

certified tester exam. (4th ed.) Rocky Nook Inc. (2014)

17

Two-Step Deductive Verification
of Control Software Using Reflex�

Igor Anureev1, Natalia Garanina1,2, Tatiana Liakh2,3, Andrei Rozov2,3,
Vladimir Zyubin2,3, and Sergei Gorlatch4

1 A. P. Ershov Institute of Informatics Systems, Acad. Lavrentieva prosp. 6, 630090
Novosibirsk, Russia

anureev@gmail.com, garanina@iis.nsk.su
2 Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia
Institute of Automation and Electrometry, Acad. Koptyuga prosp. 1, 630090

Novosibirsk, Russia
{rozov,zyubin}@iae.nsk.su

3 University of Muenster, Einsteinstr. 62, 48149 Münster, Germany
gorlatch@uni-muenster.de

Abstract. In this paper, we introduce a new verification method for
control software. The novelty of the method consists in reducing the ver-
ification of temporal properties of a control software algorithm to the
Hoare-like deductive verification of an imperative program that explic-
itly models time and the history of the execution of the algorithm. The
method is applied to control software specified in Reflex — a domain-
specific extension of the C language developed as an alternative to IEC
61131-3 languages. As a process-oriented language, Reflex enables con-
trol software description in terms of interacting processes, event-driven
operations, and operations with discrete time intervals. The first step
of our method rewrites an annotated Reflex program into an equivalent
annotated C program. The second step is deductive verification of this
C program. We illustrate our method with deductive verification of a
Reflex program for a hand dryer device: we provide the source Reflex
program, the set of requirements, the resulting annotated C program,
the generated verification conditions, and the results of proving these
conditions in Z3py – a Python-based front-end to the SMT solver Z3.

Keywords: control software · process-oriented languages · deductive
verification · SMT solver · Reflex language · Z3.

1 Introduction

The increasing complexity of control systems used in our everyday life requires a
reassessment of the design and development tools. Most challenging are safety-
critical systems, where incorrect behavior and/or lack of robustness may lead

� This work has been supported by the Russian Ministry of Education and Science
and the Russian Foundation for Basic Research (grant 17-07-01600).

18

to an unacceptable loss of funds or even human life. Such systems are widely
spread in industry, especially, in chemical and metallurgical plants. Since behav-
ior of control systems is specified in software, the study of control software is
of great interest. Correct behavior under various environmental conditions must
be ensured. In case of a hardware failure, e.g. plant damage or actuator fault,
the control system must automatically react to prevent dangerous consequences.
This is commonly referred to as fault tolerant behavior [1]. Because of the do-
main specificity, control systems are usually based on industrial controllers, also
known as programmable logic controllers (PLCs), and specialized languages are
used for designing control software.

PLCs are inherently open (i.e. communicate with external environment via
sensors and actuators), reactive (have event-driven behaviour) and concurrent
(have to process multiple asynchronous events). These features lead to special
languages being used in the development of control software, e.g. the IEC 61131-
3 languages [2] which are the most popular in the PLC domain. However, as
the complexity of control software increases and quality is of higher priority,
the 35 years old technology based on the IEC 61131-3 approach is not always
able to address the present-day requirements [3]. This motivates enriching the
IEC 61131-3 development model with object-oriented concepts [4], or developing
alternative approaches, e.g. [5–8].

To address the restrictions and challenges in developing present-day complex
control software, the concept of process-oriented programming (POP) was sug-
gested in [9]. POP involves expressing control software as a set of interacting pro-
cesses, where processes are finite state automata enhanced with inactive states
and special operators that implement concurrent control flows and time-interval
handling. Compared to well-known FSA modifications, e.g. Communicating Se-
quential Processes [10], Harel’s Statecharts [11], Input/Output Automata [12],
Esterel [13], Hybrid Automata [14], Calculus of Communicating Systems [15],
and their timed extensions [16, 17], this technique both provides means to specify
concurrency and preserves the linearity of the control flow at the process level.
Therefore, it provides a conceptual framework for developing process-oriented
languages suitable to design PLC software. The process-oriented approach was
implemented in domain-specific programming languages, such as SPARM [18],
Reflex [19], and IndustrialC [20]. These languages are C-like and, therefore, easy
to learn. Translators of these languages produce C-code, which provides cross-
platform portability. With their native support for state machines and floating
point operations, these languages allow PLC software to be conveniently ex-
pressed.

The SPARM language is a predecessor of the Reflex language and is now out
of use. IndustrialC targets strict utilization of microcontroller peripherals (regis-
ters, timers, PWM, etc.) and extends Reflex with means for handling interrupt.
A Reflex program is specified as a set of communicating concurrent processes.
Specialized constructs are introduced for controlling processes and handling time
intervals. Reflex also provides constructs for linking its variables to physical I/O

19

signals. Procedures for reading/writing data through registers and their mapping
to the variables are generated automatically by the translator.

Reflex assumes scan-based execution, i.e. a time-triggered control loop, and
strict encapsulation of platform-dependent I/O subroutines into a library, which
is a widely applied technique in IEC 6113-3 based systems. To provide both
ease of support and cross-platform portability, the generation of executable code
is implemented in two stages: the Reflex translator generates C-code and then
a C-compiler produces executable code for the target platform. Reflex has no
pointers, arrays or loops. Despite its very simple syntax, the language has been
successfully used for several safety-critical control systems, e.g., control soft-
ware for a silicon single-crystal growth furnace [21]. Semantic simplicity of the
language together with the continuing practical applicability makes Reflex at-
tractive for theoretical studies.

Currently, the Reflex project is focused on design and development tools for
safety-critical systems. Because of its system independence Reflex easily inte-
grates with LabVIEW [22]. This allows to develop software combining event-
driven behavior with advanced graphic user interface, remote sensors and actu-
ators, LabVIEW-supported devices, etc. Using the flexibility of LabVIEW, a set
of plant simulators was designed for learning purposes [23]. The LabVIEW-based
simulators include 2D animation, tools for debugging, and language support for
learning of control software design. One of the results obtained in this direction
is a LabVIEW-based dynamic verification toolset for Reflex programs. Dynamic
verification treats the software as a black-box, and checks its compliance with
the requirements by observing run-time behavior of the software on a set of
test-cases. While such a procedure can help detect the presence of bugs in the
software, it cannot guarantee their absence [24].

Unlike dynamic verification, static methods are based on source code analysis
and are commonly recognized as the only way to ensure required properties of
the software. It is therefore very important to adopt static verification methods
for Reflex programs.

In this paper, we propose a method of deductive verification of Reflex pro-
grams. The original two-step scheme of the method allows us to reduce the
verification of temporal properties of a control algorithm written in Reflex to
the Hoare-like deductive verification of a C program that explicitly models time
and the history of the execution of the algorithm.

The paper has the following structure. In Section 2, we describe the lan-
guage for specifying of temporal properties of Reflex programs and an exam-
ple of a Reflex program controlling a hand dryer with its properties. Section
3 presents the algorithm of transforming an annotated Reflex programs into a
very restricted subset of annotated C programs called C-projections of Reflex
programs. We illustrate this algorithm by the example of the C-projection of
the dryer-controlling program. Rewriting an annotated Reflex program into its
C-projection is the first step of our deductive verification method. The second
step — generation of verification conditions for C-projection programs of this
subset — is defined in Section 4. Examples of verification conditions for the C-

20

projection of the dryer-controlling program illustrate the rules of this generation.
In the concluding Section 5, we discuss the features of our method and future
work.

2 Specification of properties of Reflex programs

Our verification method reduces the verification of Reflex programs to the ver-
ification of C-projection programs.A Reflex program, together with its require-
ments for verification, is translated into an equivalent C-projection program and
a corresponding set of properties. In this section, we define the specification
method for the properties of Reflex programs. This method is illustrated with
an example Reflex program for a hand dryer controller.

We specify properties of Reflex programs using two kind of languages: an
annotation language and an annotating language. The annotation language is a
language of logic formulas that describe program properties. These formulas are
called annotations. The annotating language is a markup language for attributing
annotations to a program. Constructs of this language are called annotators. A
program extended with annotators is an annotated program.

Annotations of Reflex programs are formulas of a many-sorted first-order
logic. The specific formula syntax in the example uses the language of the python-
based front-end Z3py [25] to the SMT solver Z3 [26] used in deductive verification
of the resulting C-projection programs.

Temporal properties of Reflex programs can be expressed in the annotations.
The discrete-time model used in the annotations is based on the periodicity of
interaction between a Reflex program and its object under control. A Reflex
program and its controlled object interact via input and output ports associated
with the program variables. Every time-triggered control loop the program reads
input ports and then writes the values to the corresponding variables. Changing a
variable value as a result of writing to an input port is called its external update.
At the end of control loop, the program writes new values to output ports.
Writing values from input ports to variables and reading values from variables
to output ports occur periodically with a fixed period (program cycle) specified
in milliseconds. Time in the annotations is modeled by the implicit variable
tick (which is not used in Reflex programs explicitly) specifying the number
of program cycles. Thus, tick is an analogue of the global clock, counting the
number of interactions of the Reflex program with its controlled object. One tick
of the clock corresponds to one program cycle.

Each program variable x is interpreted in the annotations as an array in
which indexes are values of tick, and elements are values of x associated with
tick. Thus, in the annotation context, x stores a history of its changes. We denote
a set of annotations by F , such that f ∈ F is an annotation specifying some
Reflex program property.

The annotating language for Reflex programs includes three kinds of annota-
tors. The invariant annotator INV f; specifies that the property f must be true
before each program cycle. The initial condition annotator ICON f; specifies that

21

the property f must be true before the first program cycle. The external con-
dition annotator ECON f; constrains external updates: the property f must be
true after each external update.

Let us illustrate our approach by using a simple example of a program con-
trolling a hand dryer like those often found in public restrooms (Fig. 1, Listing 1).

Fig. 1. Hand Dryer

Here, the program uses the input from an infrared sen-
sor, indicating presence of hands under the dryer and it
controls the fan and heater with a joint output signal. The
first basic requirement is that the dryer is on while hands
are present and it turns off automatically otherwise. Triv-
ial at first sight, the task becomes complicated because of
discontinuity of the input signal caused by the users rub-
bing and turning their hands under the dryer. To avoid
erratic toggling of the dryer heater and fan, the program
should not react to brief interruptions in the signal, and
the actuators should only be turned off once the sensor
reading is a steady ”off”. The control algorithm can only
meet this requirement by measuring the duration of the off
state of the sensor. In this case, a continuous ”off” signal
longer than a certain given time (for example, 1s) would
be regarded as a ”hands removed” event. The second re-
quirement is more simple and formulated as ’dryer never
turns on spontaneously’. These two requirements (speci-

fied by the formulas p1 and p2 below) we will verify to demonstrate the proposed
approach.

PROGR HandDryerController {
/* =========================== */
/* == ANNOTATIONS: */
/* INV inv; */
/* ICON icon; */
/* ECON econ; */
/* == END OF ANNOTATIONS */

TACT 100;
CONST ON 1;
CONST OFF 0;

/* ============================= */
/* I/O ports specification */
/* direction , name , address , */
/* offset , size of the port */
/* ============================= */

INPUT SENSOR_PORT 0 0 8;
OUTPUT ACTUATOR_PORT 1 0 8;

/* ============================= */
/* processes definition */
/* ============================= */

PROC Ctrl {
/* ===== VARIABLES ============= */

BOOL hands = {SENSOR_PORT [1]} FOR ALL;
BOOL dryer = {ACTUATOR_PORT [1]} FOR ALL;

/*===== STATES ================ */
STATE Waiting {

IF (hands == ON) {

22

dryer = ON;
SET NEXT;

} ELSE dryer = OFF;
}
STATE Drying {

IF (hands == ON)
RESET TIMEOUT;
TIMEOUT 10

SET STATE Waiting;
}

} /* \PROC */
} /* \PROGRAM */

Listing 1. Hand dryer example in Reflex

In Reflex programs, the PROGR construct specifies the name and body of the
program. The annotators are added at the beginning of the program body as the
special kind of comments. In our case the annotators are INV inv;, ICON icon;,
and ECON econ;, where inv, icon, and econ are annotations defined below. The
TACT construct specifies the number of milliseconds corresponding to one program
cycle. The CONST construct is used to specify program constants. Constructs INPUT
and OUTPUT describe the input and output ports, respectively. Program variables
are specified by variable declarations. For example, the variable declaration BOOL

hands = SENSOR_PORT[1] FOR ALL; associates the boolean variable hands with
the first bit of the port SENSOR_PORT and specifies that all processes can use this
variable. The PROC construct is used to describe processes of the program. Our
example program has one process Ctrl (controller) that controls a hand dryer,
i.e. its fun and heater. The STATE construct specifies process states. Process Ctrl
can be in two states WAITING and DRYING. Actions executed by the process in
a state are described in the body of that state by statements and operators.
In addition to C-statements and operators, there are Reflex-specific ones. Each
process has its own time counter (local clock), which is also counted in ticks (the
number of program cycles). Statement RESET TIMEOUT; resets the local clock of
the process. Statement TIMEOUT x stm; launches the execution of statement stm
when the local clock is equal to x. Statement SET NEXT; moves the process to
the next state in the text of the program, and statement SET STATE s; sets the
process to the state s. These two statements also reset the local clock of the
process.

The initial condition icon of the form (in the format of formulas in Z3py [25])

And(Or(dryer[0] == 0, dryer[0] == 1), Or(hands[0] == 0, hands[0] == 1))

specifies that variables dryer and hands can only have values 0 or 1. The external
condition econ of the form

Or(hands[tick] == 0, hands[tick] == 1)

expresses the fact that external updates of hands return 0 or 1.
Invariant inv of the form And(p1, p2, ap) includes properties p1 and p2 which

specify the desirable behaviour of the program and the conjunction ap of aux-
iliary properties necessary to verify them. These auxiliary properties are as fol-
lows: 1) the values of the program constants are equal to their predefined values,

23

2) counter tick is non-negative, 3) all previous and current values of variables
hands and dryer are 0 or 1, 4) the current values of the latter variables are the
same as their previous values (since they have not yet been modified by external
updates), 5) the dryer can only be in two states WAITING and DRYING, and 6) the
dryer in state DRYING is always on. We omit the notation for ap because it is
rather cumbersome.

Property p1 of the form

ForAll(i, Implies(And(0 <= i, i < tick),
Implies(And(Implies(i > 0, hands[i− 1] == 0), hands[i] == 1),
dryer[i] == 1)))

refines the first hand-dryer requirement that the dryer is turned on (dryer[i] = 1)
no later than 100 millisecond (1 tick) after the appearance of hands.

Property p2 of the form

ForAll(i, Implies(And(0 <= i, i < tick − 1),
Implies(And(dryer[i] == 0, hands[i+ 1] == 0), dryer[i+ 1] == 0)))

corresponds to the second requirement that the dryer never turns on sponta-
neously.

In the next section, we present the method of rewriting an annotated Reflex
program to the annotated C-projection to generate the verification conditions
and subsequently check them with a theorem proving tool which can handle
the many-sorted first-order logic. We apply this method to the Reflex program
describing the hand dryer controller.

3 Rewriting annotated Reflex programs into
C-projections

Reflex programs and their C-like projections share the same annotation lan-
guage. The annotating language for C-projections of Reflex programs includes
four annotators. The assume annotator ASSUME f; specifies that f is supposed to
be true at the location of this annotator in the program. The assert annotator
ASSERT f; states that f must be true at the location of this annotator in the
program. The invariant annotator INV l f; is a special variant of the named
assert annotator with the name l which is processed by our verification condi-
tion generator in a special way. The function annotator REQUIRES Pf; ENSURES

Qf; must be placed directly after the function prototype t f (t1 x1, . . . , tnxn).
The function prototypes are used to call functions written in other programming
languages in Reflex programs. This annotator specifies the precondition Pf and
postcondition Qf of the function f . Formulae Pf and Qf depend on x1, . . . , xn.
Postcondition Qf also depends on the special variable ret f which stores the
value returned by f . The variables x1, . . . , xn and ret f are considered to be
global variables of the C-projection program.

The C-projection of the Reflex program for a hand dryer controller reads as
follows:

24

#define TACT 100
#define ON 1
#define OFF 0
#define STOP_STATE 0
#define ERROR_STATE 1
#define Ctrl_Waiting 2
#define Ctrl_Drying 3

int Ctrl_state;
int Ctrl_clock;
int tick;
int hands [];
int dryer [];

inline void init() {
tick = 0;
Ctrl_state = Ctrl_Waiting;
Ctrl_clock = 0;
ASSUME icon;

}

inline void Ctrl_exec () {
switch (Ctrl_state) {

case Ctrl_Waiting:
if (hands[tick] == ON) {

dryer[tick] = ON;
Ctrl_clock = 0;
Ctrl_state = Ctrl_Drying;

}
else

dryer[tick] = OFF;
break;

case Ctrl_Drying:
if (hands[tick] == ON) {

Ctrl_clock = 0;
Ctrl_state = Ctrl_Drying;

}
if (Ctrl_clock >= 10) {

Ctrl_clock = 0;
Ctrl_state = Ctrl_Waiting;

}
break;

}
}

void main() {
init();
for (;;) {

INV lab inv;
havoc hands[tick];
ASSUME econ;
Ctrl_exec ();
Ctrl_clock = Ctrl_clock + 1;
tick = tick + 1;
hands[tick] = hands[tick -1];
dryer[tick] = dryer[tick -1];

}
}

Listing 2. Hand dryer example in C-projection

25

This program is the result of applying program transformation rules that
are used for generating an equivalent program that must include the following
constructs which replace the source Reflex constructs.

The macro constant TACT specifying the time of the program cycle replaces the
TACT construct. Reflex constants (for example, ON and OFF) are replaced by macro
constants as well. The macro constants STOP_STATE and ERROR_STATE encode the
stop state (specifying that the program terminates normally) and the error state
(specifying that the program terminates with an error). For each program process
p and for each state s of this process, the macro constant s_p encodes this state.
The variable tick specifies the global clock. For each program process p, the
variables p_state and p_clock specify the current state and the current value
of the local clock of the process p. Like tick, these variables are also implicit
variables of the Reflex program, and so they can be found in its annotations.
The type t of each Reflex variable x is replaced by the dynamic array type t[].

Function init() initializes the program processes. It sets the global clock
and all local clocks to 0, sets all processes to their initial states and imposes
restrictions on the initial values of Reflex variables, using the assume annotator
ASSUME f (for the hand-dryer program ASSUME icon).

For each program process p, function p_exec specifies the actions of the pro-
cess p during the program cycle. The body of function p_exec represents the
switch statement where labels are macro constants coding states of the process
p_exec. All Reflex-specific statements and operators in bodies of process states
are replaced by C constructs in accordance with their semantics.

The infinite loop for(;;) specifying the actions of all processes during the
program cycle is the last statement of the resulting program. Its body starts with
the invariant annotator INV lab inv; specifying the invariant inv of the Reflex
program. The next fragment havoc hands[tick]; ASSUME econ; specifies external
updates of Reflex variables (in our case, hands) and the constraint econ for them.
We add the special statement havoc x; [27] to the standard C language in order
to model assigning an arbitrary value to the variable x. The third fragment
is a sequence of calls of the functions p_exec() for each program process p.
The next fragment increments the values of global clock and all local clocks.
The last fragment specifies that values of Reflex variables are preserved after
incrementing the global time and before executing external updates. For the
hand-dryer program, this fragment is hands[tick] = hands[tick-1]; dryer[tick

] = dryer[tick-1];.

The definition of the transformational semantics of a Reflex program (the
rules for its transformation into C projection) and proving transformation cor-
rectness (equivalence of the Reflex program and its C projection) are beyond the
scope of this paper. The equivalence means functional equivalence of the Reflex
program and its C projection, where the inputs of both programs are the external
updates vector for each Reflex variable, and the outputs are the vector of values
for each Reflex variable, as well as the current process states and the values of
global clock and local clocks. It is based on the operational semantics of Reflex
programs, their C projections, and annotators of both annotation languages.

26

Thus, we reduce the verification of Reflex programs to the verification of
programs of a very restricted subset of C extended by the havoc statement.
Next we describe the rules of generating the verification conditions for programs
of this subset. These verification conditions can further be checked by some
theorem proving tool that can handle many-sorted first-order logic.

4 Generating Verification Conditions for C-projections of
Reflex programs

Like many other deductive verification engines, such as FramaC [28], Spark [29],
KeY [30], Dafny [31], etc., our algorithm for generating verification conditions
implements a predicate transformer. We use Z3 to prove such verification con-
ditions. Let us consider the features of its implementation especially taking into
account the fact that it is applied to a program which is an infinite loop and
some variables of this program are externally changed at each iteration of the
loop. The algorithm sp(A,P) recursively calculates the strongest postcondition
[32] expressed in the many-sorted first-order logic for program fragment A and
precondition P . It starts with the entire program and the precondition True.
Its output is the set of verification conditions saved in the variable vcs. The
algorithm uses service variables vars and reached. Variable vars stores infor-
mation about variables and their types as a set of pairs of the form x : t, where
x is a variable, and t is its type. Variable reached stores the set of names of in-
variant annotators that have been reached by the algorithm. It is used to ensure
termination of the algorithm. The initial values of these variables are empty sets.

We define the generation algorithm sp as the ordered set of equalities of the
form sp(A,P) = [a1; . . . ; an; e]. This notation means that the actions a1, . . .,
an are sequentially executed before the expression e is computed. Every action
ai of the form v + = S adds the elements of the set S to the set v. The equality
sp(A,P) = e is an abridgement for sp(A,P) = [e].

We use the following notation in the algorithm definition. Let array(t) denote
the array type with the elements of type t. Let expression e have type t, {x :
t, y : array(t)} ⊆ vars, {z : t, v : t} ∩ vars = ∅ for each t, and e′ be the result of
conversion of C expression e to a Z3py expression. Function Store(a, i, v) is the
array update function from Z3 language.

Since the syntax of C-projections of annotated Reflex programs is very re-
stricted, algorithm sp has the following compact form:

1. sp(t f(t1 x1, . . . , tn xn); , P) =
[vars + = {x1 : t1, . . . , xn : tn, ret f : t}; P];

2. sp(t x; , P) = [vars + = {x : t}; P];
3. sp(#define c e; , P) = [vars + = {c : t}; And(P, c == e′)];
4. sp(havoc y[i]; , P) =

[vars + = {z : t, v : t}; And(P (y ← z), y == Store(z, i, v))];
5. sp(havoc x; , P) = [vars + = {z : t}; And(P (x ← z), x == z)];
6. sp(x[i] = e; , P) =

[vars + = {z : array(t)}; And(P (y ← z), y == Store(z, i, e′(y ← z)))];

27

7. sp(x = e; , P) = [vars + = {z : t}; And(P (x ← z), x == e′(x ← z))];
8. sp({B}, P) = sp(B, P);
9. sp(if (e) B else C, P) =

Or(sp(B,And(P, econv(e))), sp(C,And(P,Not(econv(e))));
10. sp(switch (e) l1 : B1 break; . . . ln : Bn break; , P) =

Or(sp(B1, And(P, e′ == l1)), . . . , sp(Bn, And(P, e′ == ln)),
And(P, e′! = l1, . . . , e

′! = ln));
11. sp(for(; ;) B, P) = sp(B for(; ;) B, P);
12. sp(x = f(e1, . . . , en); , P) =

sp(x1 = e1; . . . xn = en; ASSERT Pf ; havoc ret f ;
ASSUME Qf ; x = ret f ; , P);

13. sp(ASSUME e; , P) = And(P, e);
14. sp(ASSERT e; , P) = [vcs+ = {Implies(P, e)}; And(P, e)];
15. if l /∈ reached, sp(INV l e; A, P) =

[reached + = {l}; vcs + = Implies(P, e); sp(A, e)];
16. if l ∈ reached, sp(INV l e; A, P) = [vcs + = Implies(P, e); e];
17. sp(s A, P) = sp(A, sp(s, P)).

This algorithm terminates because sp recursively reduces the input program
in all cases except for(; ;) (case 11), and due to case 16 the algorithm can pass
the invariant annotator at the begin of body of for(; ;) only once.

The computation of verification conditions for the trace of the annotated
hand dryer program (Listing 2) starting at the point #define TACT 100 and end-
ing at the point INV lab inv; results in

– vcs = {Implies(And(true, TACT == 100, ON == 1, OFF == 0,
STOP STATE == 0, ERROR STATE == 1, Ctrl WAITING == 2,

Ctrl DRY ING == 3, tick == 0, init state == INIT WAITING,
init clock == 0, dryer[0] == 0, icon), inv)};

– vars = {TACT : int, ON : int, OFF : int, STOP STATE : int,
ERROR STATE : int, Ctrl WAITING : int, Ctrl DRY ING : int,
Ctrl state : int, Ctrl clock : int, dryer : array(int), hands : array(int),

tick : int, tick 1 : int, Ctrl state 1 : int, Ctrl clock 1 : int};
– reached = {lab}.

Here x i, where i is a natural number, is a fresh variable generated by algorithm
sp in the case of the assignment of the form x = . . . or x[. . .] =

Other seven verification conditions starting at the point INV lab inv; and
ending at the same point and corresponding to different branches of the switch
statement and if statements are generated likewise. All generated verification
conditions are successfully proved in Z3py.

The generation of verification conditions for C-projections of annotated Re-
flex programs and proving them complete the description of our two-step method
of deductive verification for Reflex programs.

Currently, we prepare for publication a description of the transformational
semantics of Reflex programs (including a formal proof of its correctness) and a
formal proof of the soundness of the axiomatic semantics of C projections w.r.t.

28

their operational semantics. Software tools automating the steps of the method
are being developed on their basis.

5 Discussion and Conclusion

In this paper we propose a two-step method of deductive verification of Re-
flex programs. This method includes the annotation and annotating languages
for Reflex programs, the algorithm for transforming an annotated Reflex pro-
gram into the annotated program written in restricted C (the C-projection of
the Reflex program), the annotating language, and the algorithm of generating
verification conditions for C-projections of Reflex programs. Our method can be
applied to the so-called pure Reflex programs that do not contain definitions of
functions written in other languages.

In practice, Reflex programs often include definitions and calls of C functions.
We can extend our method to this more general case of Reflex, because such
programs must also include a prototype for each C function. Verification of such
Reflex programs is reduced to separate verification of definitions of C functions
and a pure Reflex program extended by calls of functions. These functions are
considered black boxes and their prototypes are annotated with preconditions
and postconditions treated as specifications of these black boxes. The definitions
of C functions can be verified by any C program verification method or tool. For
verification of Reflex programs with function calls, we use our two-step method.

Our verification method has several remarkable properties. Firstly, it mod-
els the interaction between a Reflex program and its controlled object through
the input and output ports associated with the program variables. The havoc
statement in the C-projection of the Reflex program allows to represent writ-
ing values from input ports to variables. These external variable updates are
constrained by the assume annotator. Checking values read from variables to
output ports is specified by the assert and invariant annotators. Secondly, this
method reduces the verification of some time properties of Reflex programs to
Hoare-like deductive verification by explicitly modeling time in C-projections of
Reflex programs with variables which specify the global clock, local clocks of
program processes and history of values of Reflex variables. Thirdly, our ver-
ification conditions generation algorithm can handle infinite loops intrinsic to
control systems.

There are several directions for further development of the method. We plan
to extend it to the textual languages of the IEC 61131-3 family. Like Reflex,
these languages are used for programs that interact with the controlled object
only between program cycles. The other research direction is to investigate new
temporal properties for which verification can also be reduced to Hoare-like de-
ductive verification. Especially, we are interested in temporal aspects associated
with the histories of values of process states and process clocks, which would
allow to evaluate the performance of control sofware algorithms. Explicit time
modeling in Reflex annotations is not a very natural way to represent the time
properties of Reflex programs. We plan to use temporal logics (LTL, CTL and

29

MTL) and their extensions to describe these properties and develop an algorithm
for translating such descriptions into formulas with explicit time modeling. To
make this task feasible, we plan to use specialized ontological patterns [33] in-
stead of arbitrary formulas of these logics. In addition to Z3 solver, we intend to
use in our method other provers and solvers in order to extend the class of verifi-
able properties. In particular, Z3 solver cannot prove that dryer will work for at
least 10 seconds after hands have been removed because this property requires
advanced induction. The interactive theorem prover ACL2 [34] with advanced
induction schemes is a good candidate to solve this problem. Finally, we plan to
consider new case studies on control software algorithms.

References

1. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant
Control. 2nd edn. Springer-Verlag Berlin, Heidelberg (2006)

2. IEC 61131-3: Programmable controllers Part 3: Programming languages. Rev. 2.0.
Intern. Electrotechnical Commission Std. (2003)

3. Basile, F., Chiacchio, P., Gerbasio, D.: On the Implementation of Industrial Au-
tomation Systems Based on PLC. IEEE Transactions on Automation Science and
Engineering 4(10), 990–1003 (2013)

4. Thramboulidis, K., Frey, G.: An MDD Process for IEC 61131-based Industrial Au-
tomation Systems. In: 16th IEEE Intern. Conf. on Emerging Technologies and Fac-
tory Automation (ETFA11), pp. 1–8. Toulouse, France (2011)

5. IEC 61499: Function Blocks for Industrial Process Measurement andControl Sys-
tems. Parts 1 – 4. Rev. 1.0. Intern. Electrotechnical Commission Std (2004/2005)

6. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with
Finite State Machines. Auerbach Publications, USA, Boston, MA (2006)

7. Samek, M.: Practical UML statecharts in C/C++: event-driven programming for
embedded systems. 2nd edition. Newnes, Oxford (2009)

8. Control Technology Corporation. QuickBuilderTMReference Guide. 2018,
https://controltechnologycorp.com/docs/QuickBuilder Ref.pdf. Last accessed
20 Jan 2019

9. Zyubin, V. E.: Hyper-automaton: A Model of Control Algorithms. In : Proceedings
of the IEEE Intern. Siberian Conf. on Control and Communications (SIBCON-
2007), pp. 51–57. The Tomsk IEEE Chapter & Student Branch, Tomsk, Russia
(2007)

10. Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall Int. (1985).
11. Harel, D.: Statecharts: a Visual Formalism for Complex Systems. Science of Com-

puter Programming 8(3), 231–274 (1987)
12. Lynch, N., Tuttle, M.: An Introduction to Input/Output Automata. CWI Quar-

terly 2(3), 219–246 (1989)
13. Berry, G.: The Foundations of Esterel,.In: Proof, Language and Interaction: Essays

in Honour of Robin Milner, pp. 425–454. MIT Press, Foundations of Computing
Series (2000)

14. Henzinger, T.A.: The Theory of Hybrid Automata. In: Inan M.K., Kurshan R.P.
(eds) Verification of Digital and Hybrid Systems, NATO ASI Series (Series F: Com-
puter and Systems Sciences), vol. 170. pp. 265–292. Springer, Berlin, Heidelberg
(2000)

30

15. Milner, R.: Communication and Concurrency. Series in Computer Science. Prentice
Hall, New Jersey (1989).

16. Kaynar, D. K., Lynch, N., Segala, R., Vaandrager, F.: Timed I/O Automata: A
Mathematical Framework for Modeling and Analyzing Real-Time Systems. In: 24th
IEEE Intern. Real-Time Systems Symposium (RTSS’03), pp. 166–177. IEEE Com-
puter Society Cancun, Mexico (2003)

17. Kof, L., Schätz, B.: Combining Aspects of Reactive Systems. In: Proc. of Andrei
Ershov Fifth Int. Conf. Perspectives of System Informatics, pp. 239–243. Novosibirsk
(2003)

18. Zyubin, V.: SPARM Language as a Means for Programming Microcontrollers. Op-
toelectronics, Instrumentation, and Data Processing, 2(7), 36–44, (1996)

19. Liakh, T. V., Rozov, A. S., Zyubin, V. E.: Reflex Language: a Practical Notation
for Cyber-Physical Systems. System Informatics. 12(6), 85–104 (2018)

20. Rozov A.S., Zyubin V.E.: Process-oriented programming language for MCU-based
automation. In: Proc. of the IEEE Intern. Siberian Conf. on Control and Com-
munications, pp. 1–4. . The Tomsk IEEE Chapter Student Branch, Tomsk, Russia
(2013)

21. Bulavskij, D., Zyubin, V., Karlson, N., Krivoruchko, V., Mironov, V.: An Auto-
mated Control System for a Silicon Single-Crystal Growth Furnace. Optoelectronics,
instrumentation, and data processing 2(5), 25–30 (1996)

22. Travis, J., Kring, J.: LabVIEW for Everyone: Graphical Programming Made Easy
and Fun. 3rd Edition. Prentice Hall PTR, Upper Saddle River, NJ, USA (2006)

23. Zyubin, V.: Using Process-Oriented Programming in LabVIEW. In: Proc. of the
Second IASTED Intern. Multi-Conference on “Automation, control, and informa-
tion technology”: Control, Diagnostics, and Automation, pp. 35–41. Novosibirsk
(2010)

24. Randell, B.: Software Engineering Techniques. Report on a conference sponsored
by the NATO Science Committee, p. 16. Brussels, Scientific Affairs Division, NATO,
Rome, Italy (1970)

25. Z3 API in Python, https://ericpony.github.io/z3py-tutorial/guide-examples.htm
Last accessed 20 Jan 2019

26. Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS 2008: Tools and
Algorithms for the Construction and Analysis of Systems, LNCS, vol. 4963, pp.
337–340 (2008)

27. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: Proc. of the 4th Intern.
Conf. on Formal Methods for Components and Objects, LNCS, vol. 4111, pp. 364–
387 (2005)

28. FramaC Homepage, https://frama-c.com/
29. Spark Pro Homepage, https://www.adacore.com/sparkpro
30. The KeY project Homepage, https://www.key-project.org/
31. Dafny Homepage, https://www.microsoft.com/en-us/research/project/dafny-a-

language-and-program-verifier-for-functional-correctness/
32. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.

Springer-Verlag (1990)
33. Garanina, N., Zyubin, V., Lyakh, V., Gorlatch, S.: An Ontology of Specification

Patterns for Verification of Concurrent Systems. In: New Trends in Intelligent Soft-
ware Methodologies, Tools and Techniques. Proc. of the 17th Intern. Conf. SoMeT-
18. Series: Frontiers in Artificial Intelligence and Applications, Amsterdam: IOS
Press, pp. 515-–528. (2018)

34. ACL2 Homepage, http://www.cs.utexas.edu/users/moore/acl2/

31

A Metamodel-based Approach for Adding
Modularization to KeYmaera’s Input Syntax�

Thomas Baar1[0000−0002−8443−1558]

Hochschule für Technik und Wirtschaft (HTW) Berlin, Department of Engineering I,
Wilhelminenhofstraße 75A, 12459 Berlin, Germany thomas.baar@htw-berlin.de

Abstract. The theorem prover KeYmaera allows (1) to describe Cyber-
Physical Systems (CPSs) in terms of a Hybrid Program (HP), (2) to
specify properties for the defined system, and (3) to formally verify these
properties in a tailored logic called Differential Dynamic Logic (DDL).

The syntax of Hybrid Programs is rather poor and covers only the most
basic program statements, such as assignment, test, sequential execu-
tion, and iteration. The decision to keep the syntax of HPs very simple
has different consequences: An advantage is that also the verification
calculus can be kept relatively simple. On the downside we have that
even small programs are hard to understand and that the programmer is
forced to program using a copy-and-paste style, which obviously hampers
maintenance. The most significant drawback, however, is the absence of
modularization and a library concept; making the development and ver-
ification of bigger systems a huge burden.

In this paper, we identify several problems of KeYmaera’s input syntax
and illustrate them with examples. To overcome these problems, we first
describe the original syntax in form of a metamodel. Then, we propose to
extend this metamodel with established programming concepts such as
subprogram and abrupt termination. We illustrate our extensions by us-
ing a new graphical concrete syntax. Examples from a recent KeYmaera
tutorial serve for our paper as illustration examples.

Keywords: Cyber-Physical System (CPS) · Safety Property Verifica-
tion · Theorem Proving · Language Design · Domain-Specific Language
(DSL) · Metamodel.

1 Motivation

A Cyber-Physical System (CPS) is a system existing in the real world, which
usually consists of both cyber and physical components. The behaviour of a
cyber component is determined by the (computer) program, which is executed
on this component while the behaviour of a physical component follows laws
from physics, e.g. for torque, acceleration, velocity, etc. An important subset of
CPSs are control systems consisting of sensors, processors, and actuators, whose

� The author thanks the anonymous reviewers for their detailed and helpful reviews.

32

2 Thomas Baar

correct functioning is of upmost importance and should be assured by formal
verification techniques.

A hybrid system is a formal model of a CPS. To capture the behaviour of cy-
ber components, the hybrid system needs the notion of programs. The behaviour
of physical components are modelled by law in physics, which are formulated in
terms of ordinary differential equations (ODEs). The theorem prover KeYmaera
is able to formally verify properties of hybrid systems formulated in differential
dynamic logic (DDL)[13, 18]. In this paper, we analyse DDL as used by KeY-
maera as input format. We point out some obstacles of the chosen input syntax
and make proposals to overcome them.

One of the main problems of the used DDL is, that this single formalism is
used for three different purposes, namely, to i) describe the system to be analysed
(system description), to ii) formulate the properties to be hold for the system
(system specification), and to iii) formulate proofs (system verification). Note
that a proof is a tree of DDL-formulas where each connection between nodes of
the proof tree must be justified by one rule of the used proof calculus.

Thus, the very same DDL formalism serves quite different purposes and there
are some cases, in which it is hard to say, which purpose a given DDL artefact
actually serves. For example, the user of KeYmaera is sometimes forced to refor-
mulate a system description in a non-intuitive way, just to make a property of
this system verifiable. In other words, the property about the system one would
like to prove has a strong influence on the way one describes the system itself!
Note that - ideally - one should be able to formulate the system description
fully independent from the properties one would like to prove - usually later -
about the system. As we illustrate with a model of the very simple bouncing ball
example, this independence is sometimes not possible. This makes the usage of
KeYmaera rather an art than an engineering discipline.

The input syntax for KeYmaera is very rudimentary and forces the user
to describe a system is a Big Blob, since modularization, e.g. by subsystems
or subprograms, is simply syntactically not possible. In our analysis, we identify
also other weaknesses, for example that the correct function of evolutional states
rely on executing the right statement before entering the state or that evolutional
states usually share a high portion of ODEs. Unfortunately, the current syntax
makes it impossible to let an evolutional state ’inherit’ from an already defined
evolutional state to prevent a copy-paste style in the system description.

In addition to identifying problems of KeYmaera’s input syntax, we also
make proposals to overcome these problems. In order to describe our solutions
at the right level of abstraction, our solution proposal will address the abstract
syntax - which we define in form of a metamodel - instead of the textual concrete
syntax. In order to stress the independence of our solution proposals from the
concrete syntax, we will employ also a graphical syntax, which is close to the
Abstract Syntax Tree (AST).

33

Adding Modularization to KeYmaera’s Input-Syntax 3

2 Background

We first review the logical basis of the prover KeYmaera.

2.1 Dynamic Logic (DL)

The term Dynamic Logic (DL) was coined for the first time by Harel et al. in
[7], which is based on the work of Pratt [16] and Hoare/Floyd [4, 8]. A recent
review on the history of Dynamic Logic is given by Pratt in [17].

Dynamic Logic has a long tradition in analysing programs running on a
machine. (First-Order) Dynamic Logic allows for a program α to formulate
properties for the pre- and post-state of the program’s execution. Syntactically,
DL formulas are built on top of arithmetic terms and arithmetic atomic for-
mulas, such as x < 5 + 3. The set of DL formulas is closed under the logi-
cal junctors ∧,∨,→,↔, the quantifiers ∀ ∃, and the parametrized modalities
[α] (box), <α> (diamond), where α is a program. A program is syntactically
defined as a tree of statements. We have assignment (:=), skip (skip), test
(?) as atomic statements and nondeterministic choice (∪), sequential compo-
sition (;), and iteration (*) as composed statements. Furthermore, some de-
rived statements (as known as syntactic sugar) are allowed. For example, the
program if cond then s1 else s2 endif is defined as an abbreviation for
(?cond; s1) ∪ (?¬cond; s2). In the version of DL supported by KeYmaera, all
terms (e.g. 3 + 8) including variables are of type Real, so there is no support
for a sophisticated type system. For a thorough introduction to Dynamic Logic
in syntax and semantics, the reader is referred to [6].

Semantically, a formula of form φ → [α]ψ claims that program α, when
started in a state in which φ holds, might not terminate or, in case it actually
terminates, will result always in a state, in which ψ holds. The second modality
<> (diamond), which can occur in DL-formulas as well, has a different semantics:
<α> ψ claims that program α terminates and for at least one post-state the
formula ψ holds (note, that α can behave non-deterministically).

As a concrete example, let us consider the formula

x > 0 → [if x > 0 then x := x− 1 else x := −25 endif ;x := x+ 1] x > 0 (1)

The program α within the box modality is the sequential composition (opera-
tor ;) of an if-statement and an assignment (operator :=). The claim, formulated
by (1) about program α reads as follows: Whenever α is started in a state, in
which x > 0 holds, then x > 0 must also hold once α has terminated (note,
that termination of α is not part of the claim). Formula (1) is actually valid,
i.e. under all circumstances the formula is evaluated to true (see [6] for a formal
definition of validity).

It is rather easy to argue informally on the validity of (1): This implication
evaluates only to false, when its premise evaluates to true and its conclusion to
false. The premise is x > 0. Under this assumption, when executing program α,

34

4 Thomas Baar

the then-branch of the first statement (if-statement) is always taken and de-
creases variable x by one. In the second statement, the value of x is again in-
creased by one, so the value of x in the post-state – let us denote it by xpost – is
xpost = xpre − 1 + 1, while xpre denotes the value of variable x in the pre-state.
The conclusion of (1) can thus be reduced to the proof obligation xpre−1+1 > 0,
which can never evaluate to false if we assume xpre > 0. Fortunately, we do not
have to rely on informal argumentation for showing the validity of (1) but can
also use the theorem prover KeYmaera, which proves (1) fully automatically.

Please note that the formulas of DL do not make any claim about the exe-
cution time of program α, but only formulate properties on the relationship of
α’s pre- and post-states. You might just think all statements within program α
being executed instantaneously, i.e. their execution does not take any time. This
is an important difference to the extension of DL, called Differential Dynamic
Logic (DDL), we consider next.

2.2 Differential Dynamic Logic (DDL)

DDL [12] is an extension of DL, which means that every DL formula is also a
DDL formula. The same way as a DL formula, a DDL formula usually makes
a claim about a program α. However, since DDL formulas are mainly used to
describe the behaviour of Cyber-Physical Systems, we rather say that program
α encodes the behaviour of the CPS instead of α is executed on a machine, as
we do for programs α of pure DL formulas.

The only difference between DL and DDL is a new kind of statement called
continuous evolution statement (or simply evolution statement), which is allowed
to occur in programs α. When during the execution of α a continuous evolution
statement is reached, then the execution of this statement takes time and the
system will stay in the corresponding evolution state for a while. Note that this
a new semantic concept of DDL and marks an important difference to pure DL!

Executing the evolution statement means for the modelled CPS to stay in
the evolution state as long as it wishes (the time to stay is - in general - chosen
non-deterministically). However, the modeller has two possibilities to restrict the
time period the system stays in the evolution state: The first possibility is to add
a so-called domain constraint to the evolution statement, which is a first-order
formula and which is separated from the rest of the statement by & (ampersand).
The domain constraint semantically means that the system cannot stay longer
in the evolution state than the time at which the constraint is evaluated to true.
In other words: at latest when the evaluation of the domain constraint switches
from true to false, the system has to leave the evolution state.

The second possibility to restrict the time period is to have a sequential com-
position of an evolution statement followed by a test statement. Theoretically,
the machine can leave the evolution state at any time, but if the following test
evaluates to false, then this branch of execution is dismissed for the logical anal-
ysis of the system behaviour. Thus, an evolution statement immediately followed
by a test statement is a general technique to force the system to remain in the
evolution state as long as the test condition is evaluated to false.

35

Adding Modularization to KeYmaera’s Input-Syntax 5

Bouncing Ball as a simple CPS We illustrate both the usage of an evolution
statement as well as the two mentioned techniques to control the time the system
will stay in the evolution state by the following bouncing ball example:

αBB ≡ ({x′ = v, v′ = −g & x ≥ 0}; ?x = 0; v := −cv)∗ (2)

The behaviour of the bouncing ball is described with the help of a new kind
of variables, called continuous variables. For example, variable x is always a non-
negative number and encodes the ball’s position and variable v encodes velocity,
which can be both positive (going up) or negative (going down). The constant
g is the gravitation acceleration and greater 0. The constant c is the damping
coefficient, a number between 0 and 1.

Fig. 1. Sample Trajectory of a Bouncing Ball (Source: [13, p.98])

The structure of αBB is that of an iteration (operator *) over a sequence
(operator ;) of an evolution statement (enclosed by the curly braces), followed
by a test (operator ?), followed by an assignment (operator :=). The program
αBB is read as follows: The systems starts in a state with given values for
variables x and v. These values are not specified yet, but later, we will force the
start position x0 to be a positive number while the start velocity v0 is allowed to
be positive, zero, or negative. As long as the system stays in the first evolution
state, the values of x, v will change continuously over time according to physical
laws. Thus, the continuous variables x, v represent rather functions x(t), v(t) over
time t. The relevant physical laws for x, v are expressed by the two differential
equations: x′ = v, v′ = −g.

36

6 Thomas Baar

The latter means that the velocity decreases constantly over time due to
gravitational force of the earth. Fortunately, this ODE has a simple polynomial
solution, which facilitates the analysis of the whole system considerably: v(t) =
v0 + −g ∗ t. Analogously, depending on the changing velocity v, the position x
of the bouncing ball changes with x(t) = x0 + v0 ∗ t+ −g

2 t2.
The domain constraint x ≥ 0 mentioned in the evolution statement allows

the system to remain in the evolution state only as long as x is non-negative.
Theoretically, the system can leave at any time the evolution state, but the next
statement is the test ?x = 0. Thus, if the system leaves the evolution state with
x > 0, then this computational branch will be discarded. Thus, when verifying
properties of the system we can rely on that the system leaves the evolution
state only when x = 0, meaning when the ball touches the ground. The following
assignment v := −cv encodes that the ball goes up again: The negative value
v due to the ball falling down will change instantaneously to a positive value
(multiplication with −c) but the absolute value of v decreases since the ball
loses energy when touching the ground and changing the move direction. Fig. 1
shows how the position x of a bouncing ball might change over time (sample
trajectory).

3 Problems in Using KeYmaera’s Input Syntax

Differential Dynamic Logic as introduced above is supported by KeYmaera and
allows to verify formally important properties of technical system as demon-
strated in numerous case studies from different domains, e.g. aircrafts [9, 14],
trains [15], robots [11].

However, the used input syntax to formulate properties in form of DDL
formulas suffers from numerous problems that are described in the following.
The solutions we propose to overcome these problems are discussed in Sect. 4.

(1) Invariant specification is not directly supported in DDL Besides
describing the behaviour of hybrid systems as done with program αBB for
the bouncing ball, the main purpose of DDL is to specify also properties of
such systems. Typical and in practice very important properties are so-called
safety properties, saying that the system never runs into a ’bad situation’.
Let’s encode a ’bad situation’ with ¬ψ. We can show the absence of ¬ψ
by proving that in all reachable system states formula ψ holds, i.e. ψ is an
invariant. If we assume all statements except the evolution state are executed
instantaneously, then showing invariant ψ actually means to show that ψ
holds while the system stays in any of its evolution states. However, the
modality operators provided by DDL allow only to describe the state after
the program has terminated. For example, for the bouncing ball system αBB

defined in (2) we can prove very easily

x = 0 → [αBB]x = 0 (3)

Note, however, that x = 0 is not proved to be an invariant! If we want
to express the interesting invariant, that position x remains all the time

37

Adding Modularization to KeYmaera’s Input-Syntax 7

within the interval [0, H], while H encodes the system’s initial position and
if velocity v is initially 0, we have to admit that the formula

H > 0 ∧ v = 0 ∧ x = H ∧ 0 < c ∧ c < 1 → [αBB]x ≤ H (4)

is provable, but does NOT encode x ≤ H being an invariant because this
formula does not say anything about x and H while the system stays in the
evolution state {x′ = v, v′ = −g & x ≥ 0}, which is part of αBB . In order
prove x ≤ H being an invariant the user is forced to reformulate αBB to

α′
BB ≡ ({x′ = v, v′ = −g & x ≥ 0}; (skip ∪ (?x = 0; v := −cv))∗ (5)

This, however, would be an example for choosing the system description
depending on the property we would like to prove, what we consider as bad
style.

(2) Evolution state definition cannot be reused Evolution statements
have to contain all ODEs that should hold in the corresponing states. If
a program contains multiple evolution statements, then all ODEs usually
have to be copied for all these statements, since an ODE normally encodes a
physical law that holds in each of the evolution states. Currently, the syntax
of KeYmaera does not allow to define all ODEs once and then to reuse this
definition for all occurring evolution statements. This lack of reuse results in
a copy-and-paste style for describing a system. As an example, we refer to
Example 3a from the KeYmaera-tutorial [18], page 10, equation (20): {p′ =
v, v′ = −a & v ≥ 0 ∧ p+ v2

2B ≤ S} ∪ {p′ = v, v′ = −a & v ≥ 0 ∧ p+ v2

2B ≥ S}
Here, the definition of the two evolution states (in curly braces) are very
similar and defined by copy-and-paste.

(3) Evolution state definition is not encapsulated In the KeYmaera-
tutorials [18, 12], there is a frequently applied pattern to ensure that the
system stays in an evolution state ev ≡ {. . .& . . .} for at most time �. This is
achieved by extending the definition of ev to ev′ ≡ {. . . , t′ = 1& . . . ∧ t ≤ �}
while t is a fresh continuous variable. Together with the ODE t′ = 1, the
additional domain constraint t ≤ � forces the system to leave ev′ at latest
after time � has elapsed. However, this refined definition of ev works only,
if the value of t has been set beforehand to 0. In order to achieve this, the
statement ev is usually substituted by t := 0; ev′. While this pattern works
basically in practice, the definition of ev′ is not encapsulated and prevents
compositionality of programs.

(4) Missing notion of subprogram (or function call in general) Once
the examples in the KeYmaera-tutorials [18, 12] become a little bit more com-
plicate, they are given in a composed form, e.g. Example 3a from [18, p.10]:
init → [(ctrl; plant)∗]req where init ≡ . . . , ctrl ≡ . . ., plant ≡ . . ., req ≡ . . .
Presenting a DDL problem in such a composed form highly improves read-
ability. However, the usage of such a composed notation is impossible for
the input file of KeYmaera. While one could imagine to introduce new rela-
tional symbols init, req and to constrain their interpretation by subformulas
init ↔ . . ., req ↔ . . ., it is currently impossible to define subprograms ctrl
and plant and to compose the resulting program from these subprograms.

38

8 Thomas Baar

4 A Metamodel-based Approach to Solve Identified
Problems

The problems identified above can be overcome by incorporating language con-
cepts from object-oriented programming languages and statecharts into the input
syntax of KeYmaera. In order to discuss the incorporated new language concepts
at the right level of abstraction, we formulate our proposal in form of a changed
metamodel for KeYmaera’s input syntax. As a starting point, we present the
metamodel of the current syntax.

4.1 Metamodel of Current KeYmaera Syntax

Metamodeling [5] is a widely adopted technique to specify the abstract syntax
of modelling and programming languages. One well-known language definition
is that of the Unified Modeling Language (UML) [19].

SkipTest

BinaryOpUnaryOp

BinaryExpUnaryExpLiteral

ODE

«abstract»
Exp

Var

EvolutionChoiceIterationSequenceAssignment

«abstract»
Statement

 fml

 0..1 constraint

2

2..*2..*

rhs

lhs

*

rhs

lhs

Fig. 2. Metamodel of KeYmaera’s Input Syntax (Part of Statement)

Fig. 2 shows a sketch of the metamodel of KeYmaera’s current input syntax
with focus on statements within a program. All metaassociations with multiplic-
ity greater than 1 are assumed to be ordered. If the multiplicity on a metaas-
sociation is missing, then 1 is the default value. The metaclass Exp represents
expressions of both type Real (e.g. 5 + x) and of type Boolean (e.g. x < 10).

A concrete program α for KeYmaera can be represented by an instance of
the metamodel. This instance is equivalent to the result obtained by parsing this
program, i.e. the abstract syntax tree (AST).

39

Adding Modularization to KeYmaera’s Input-Syntax 9

:Assignment
(v:=-cv)

:Exp
(x=0)

:Test

:Exp
(x>=0)

:ODE
(v'=-g)

:ODE
(x'=v)

:Evolution

:Sequence

:Iteration

:Assignment

:Test

:Evolution

:Sequence

:Assignment

:Test

:Evolution

:Sequence

:Iteration

Fig. 3. Instance of the Metamodel(left) and Control-Flow Inspired Graphical Syntax
(right) for Bouncing Ball Program (αBB)

The left part of Fig. 3 shows a sketch of the metamodel instance for the
bouncing ball program αBB ≡ ({x′ = v, v′ = −g & x ≥ 0}; ?x = 0; v := −cv)∗ as
defined in (2). In the right part we see an AST-aligned graphical representation of
the same program: Each kind of statement is represented by a block with input
and output pins. The control flow is visualized by directed edges connecting
two pins. The pre-/post-states of the program execution are represented by the
symbol for start/final state known from UML’s statemachine [19].

Based of this graphical notation we discuss now solutions for the problems
listed in Sect. 3.

4.2 Solutions for Identified Problems

(1) Invariant specification is not directly supported in DDL

:Assignment:Test:Evolution

:Sequence

:Assignment:Test:Evolution

:Sequence

:Iteration

Fig. 4. Solution for Invariant Specification Problem

As described in Sect. 3, the modal operator [α] refers always to the post-
state represented by the final state node in Fig. 3, right part. However, for
checking an invariant we need a reference to the state after each Evolution-
statement has been finished. This moment in the execution is represented
by the output-pin of the evolution state. What is needed in the program

40

10 Thomas Baar

semantics is a direct edge from each output-pin of each evolution state to
the final state, as shown in Fig. 4 by the green edge. This concept is known
as abrupt termination.

Note that abrupt termination could be realized without any change of the
input syntax of KeYmaera since it requires merely a changed control-flow
for the existing statements.

(2) Evolution state definition cannot be reused When within multiple
evolution statements repeat again and again the same ODEs and constraints,
the readability of the program suffers. To prevent this, our proposal is to
introduce the declaration of named evolution statements which can be ref-
erenced by other evolution statement to - for example - inherit from them
ODEs and constraints. The relevant change of the metamodel is shown in
Fig. 5.

ODE

«abstract»
Exp

Var

EvolutionEvolutionDecl
name:String

«abstract»
Statement

0..1 parent

 0..1 constraint

rhs
lhs

*

Fig. 5. Solution for Evolution State Reuse Problem

One problem still to be discussed is, whether the declaration of an evolution
state can occur at an arbitrary location in the program or should be rather
done prior to the program as a global declaration. This question refers to the
important issue of which scope the identifier introduced by the declaration
(see metaattribute name) should actually have. Since resolving the scope of
an identifier is rather a problem when parsing a program, this issue is out of
scope for this paper.

(3) Evolution state definition is not encapsulated As demonstrated in
the problem definition, an evolution statement sometimes works only as in-
tended, when a variable has been set beforehand to the right value. Prac-
tically this means, the evolution state EV is always prepended by an as-
signment ASGN, so (ASGN ; EV) has to occur always for correctness. In
order to get rid of dependencies of evolution state to assignments from the
context (which prevents a simple reuse of EV within a different context), we
propose to extend the evolution state with optional additional statements
that are always executed when entering or leaving the state. This state ex-

41

Adding Modularization to KeYmaera’s Input-Syntax 11

tension is well-known as entry-/exit-actions from UML statemachines. The
relevant change of the metamodel is shown in Fig. 6.

ODE

«abstract»
Exp

Var

Evolution

«abstract»
Statement

0..1 entry
0..1 exit

 0..1 constraint

rhs
lhs

*

Fig. 6. Solution for Evolution State Encapsulation Problem

(4) Missing notion of subprogram One of the most basic concepts in pro-
gramming is the possibility to encapsulate (a block of) statements with a
given name and to reuse these statements at various locations of the program.
This concept is usually called subprogram, procedure, or method ; depending
whether parameters are used or not. In general, this is a very old, proven and
well understood concept, so that we introduce only the most simple variant
in our solution proposal here (cmp. Fig. 7).

SubprogramCallSubprogramDecl
name:String

«abstract»
Statement

Fig. 7. Solution for Missing Subprogram Problem

5 Towards the Realization of Solution Proposals

In this section we review possible realization options for the proposed solu-
tion. Finally, we give a recommendation for one realization option, but the
realization itself is currently work in progress and will be described elsewhere.

42

12 Thomas Baar

5.1 Realization by Extending the Prover KeYmaera

The prover KeYmaera mainly consists of a parser for the input syntax and
a calculus in form of proof rules, which even can be changed by the user. In
addition, there are some technical components such as (i) a prover engine
for applying proof rules to create a formal proof, (ii) adapters to incorporate
external proof systems such as Z3 or Mathematica, and (iii) a GUI to control
the proof editing process. However, all these technical components are out
of scope for this paper.
For our proposals it is worth to distinguish pure syntactic changes from
those, that have an impact on the calculus used by KeYmaera. To the latter
belong the support of abrupt termination (problem (1)) and the possibility to
invoke subprograms (problem (4)). These changes would require to consider-
ably extend KeYmaera’s calculus. While such an extension requires intimate
knowledge of the underlying proof engine, it is nevertheless possible, as the
KeY-system [1]1 demonstrates. The KeY-System is an interactive verifica-
tion tool for programs implemented in the language Java and its calculus
covers all the subtleties of a real world programming language, including
function calls, call stack, variable scope, abrupt termination by throwing an
exception, heap analysis, etc.
Pure syntactic changes among our proposals, i.e. addressing problems (2),
(3), could be realized in KeYmaera just by extending the parser. Note that
the creation of an alternative concrete input syntax is also topic of the on-
going project called Sphinx [10] carried out by the authors of KeYmaera.
Sphinx aims to add a graphical frontend to the prover and will allow the
user to specify a program in a pure graphical syntax (similar to our graphi-
cal notation proposed in Fig. 3, right part).
The general problem with any deep change of the prover KeYmaera is the
technical knowledge it requires. Furthermore, there are good reasons to keep
a version of the tool with the original syntax due to its simplicity, what
makes it much simpler to use KeYmaera for teaching than, for example, its
predecessor KeY. However, a new version of KeYmaera with deep changes
is hard to maintain as the original KeYmaera might evolve in future. For
these reasons, deep changes can hardly be done by others than the original
authors of KeYmaera themselves.

5.2 Realization by Creating a Frontend-DSL

An alternative and flexible approach is the development of a frontend-DSL
to incorporate the new language concepts introduced in Sect. 4.2. The main
idea is to develop a new Domain-Specific Language according to the given
metamodel. Note that the metamodel covers merely the abstract syntax
and keeps some flexibility for the concrete syntax. Modern frameworks for
defining DSLs such as Xtext and Sirius even allow to have for one DSL

1 Historically, the KeY-system is the predecessor of KeYmaera.

43

Adding Modularization to KeYmaera’s Input-Syntax 13

Proof Management

User
Graphical Editor

Textual Editor

Tools of Frontend DSL

Proof Management

Graphical Editor

Textual Editor

Tools of Frontend DSL

Tailored KeYmaera

KeYmaera
(Original)

verificationBackend

«syncronizes»
«interacts»

Fig. 8. Architecture of Solution using Frontend-DSL

multiple representations (i.e. concrete syntaxes) supported by corresponding
editors, e.g. a textual syntax and a graphical syntax. Fig. 8 shows the general
architecture of such a tool.
Note that the new tool will allow the user to interact synchronously with
both a textual and a graphical editor to create a model. However, the new
models cannot be simply transformed to input files for the original KeY-
maera, because the new syntax supports some semantically new concepts
such as abrupt termination or subprogram invocation stack. It is the task of
the ProofManagement component to split tasks - for instance to prove an
invariant - into smaller proof obligations, which can be formulated as formu-
las of differential dynamic logic (DDL) and to pass these obligations to the
original KeYmaera tool as verification backend. How an invariant task can
be split into smaller proof obligations is demonstrated based on a concrete
example in [2].

6 Related Work

The definition of DSLs can be done with numerous technologies, e.g. Xtext,
Spoofax, Metaedit, MPS. For realizing a DSL with both a textual and a
graphical concrete syntax, the combination Xtext and Sirius is very attrac-
tive.
Enriching the prover KeYmaera with a graphical syntax for DDL programs is
done in the project Sphinx [10]. The architecture of this tool is pretty similar
to our proposal in Fig. 8, but the focus is - in difference to our approach -
not the improvement of readability and modularization by making the input
syntax richer, but to enable the user to graphically construct a program for
DDL.
While enriching a plain, imperative language with concepts from object-
orientation has been done many times in computing science’s history (take

44

14 Thomas Baar

the transition from C to C++ or from Modula to Oberon as examples), it is
still considered as a challenge. There is an excellent tutorial by Bettini in [3]
on how to incorporate into a plain sequential language based on simple ex-
pressions additional concepts from object-oriented programming (e.g. class,
attribute, method, visibility). The resulting language in this tutorial is called
SmallJava and illustrates almost all technical difficulties when realizing a
Java-like programming language in form of a DSL.

7 Conclusion and Future Work

The syntax of programs of differential dynamic logic as supported by the
theorem prover KeYmaera have been kept very simple and low level. An ad-
vantage of this decision is that also the calculus for proving such programs
being correct could be kept relatively simple and that proofs can be con-
structed and understood easily. At the downside we have that - once the
examples become a little bit more complicate - programs are hard to read,
poorly structured, and are impossible to reuse within a different context.
In this paper, we identified four general problems when applying the current
program syntax in practice. Furthermore, we made proposals to overcome
the identified problems by incorporating proven language concepts from pro-
gramming languages and from UML’s statemachines into KeYmaera’s input
syntax. These concepts have the potential to make programs scalable and
easier to be understood since they foster readability and modularization.
Our proposals have been formulated in form of a changed metamodel rep-
resenting the abstract syntax of programs. The chosen form for formulating
the proposal has the advantage of being very precise while leaving it open,
how the changes should actually be realized in a given concrete syntax. Cur-
rently, the implementation of a frontend DSL being the main constituent of
a Tailored KeYmaera tool set is under construction, but not finished yet.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification - The KeY Book - From Theory to
Practice, Lecture Notes in Computer Science, vol. 10001. Springer (2016)

2. Baar, T., Staroletov, S.: A control flow graph based approach to make the
verification of cyber-physical systems using KeYmaera easier. Modeling and
Analysis of Information Systems. 2018;25(5) pp. 465–480 (2018)

3. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publisher, 2nd edn. (2016)

4. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Pro-
ceedings of Symposium on Applied Mathematics. pp. 19–32. Mathematical
Aspects of Computer Science, American Mathematical Society

5. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for software engi-
neering. Wiley (2008)

45

Adding Modularization to KeYmaera’s Input-Syntax 15

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundation of Computing,
MIT Press (2000)

7. Harel, D., Meyer, A.R., Pratt, V.R.: Computability and completeness in logics
of programs (preliminary report). In: Hopcroft, J.E., Friedman, E.P., Harrison,
M.A. (eds.) Proceedings of the 9th Annual ACM Symposium on Theory of
Computing, May 4-6, 1977, Boulder, Colorado, USA. pp. 261–268. ACM (1977)

8. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

9. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: A formally verified hybrid system for the next-generation air-
borne collision avoidance system. In: Baier, C., Tinelli, C. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 21st International
Conference, TACAS 2015. LNCS, vol. 9035, pp. 21–36. Springer (2015)

10. Mitsch, S.: Modeling and Analyzing Hybrid Systems with
Sphinx – A User Manual. Carnegie Mellon University
and Johannes Kepler University (2013), available from:
http://www.cs.cmu.edu/afs/cs/Web/People/smitsch/pdf/userdoc.pdf

11. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for
autonomous robotic ground vehicles. In: Newman, P., Fox, D., Hsu, D. (eds.)
Robotics: Science and Systems IX, Technische Universität Berlin, Berlin, Ger-
many, June 24 - June 28, 2013 (2013)

12. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Com-
plex Dynamics. Springer, Heidelberg (2010)

13. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer (2018)
14. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoid-

ance maneuvers: A case study. In: Cavalcanti, A., Dams, D. (eds.) FM
2009: Formal Methods, Second World Congress, Eindhoven, The Nether-
lands, November 2-6, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5850, pp. 547–562. Springer (2009)

15. Platzer, A., Quesel, J.: European train control system: A case study in formal
verification. In: Breitman, K.K., Cavalcanti, A. (eds.) Formal Methods and
Software Engineering, 11th International Conference on Formal Engineering
Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5885, pp. 246–265. Springer
(2009)

16. Pratt, V.R.: Semantical considerations on floyd-hoare logic. In: 17th Annual
Symposium on Foundations of Computer Science, Houston, Texas, USA, 25-27
October 1976. pp. 109–121. IEEE Computer Society (1976)

17. Pratt, V.R.: Dynamic logic: A personal perspective. In: Madeira, A., Bene-
vides, M.R.F. (eds.) Dynamic Logic. New Trends and Applications - First
International Workshop, DALI 2017, Brasilia, Brazil, September 23-24, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10669, pp. 153–170.
Springer (2017)

18. Quesel, J.D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model
and prove hybrid systems with KeYmaera: A tutorial on safety. STTT 18(1),
67–91 (2016)

19. Rumbaugh, J.E., Jacobson, I., Booch, G.: The unified modeling language ref-
erence manuel - covers UML 2.0, Second Edition. Addison Wesley object tech-
nology series, Addison-Wesley (2005)

46

Data Compression Algorithms
in Analysis of UI Layouts Visual Complexity

Maxim Bakaev [0000-0002-1889-0692], Ekaterina Goltsova, Vladimir Khvorostov, Olga
Razumnikova [0000-0002-7831-9404]

Novosibirsk State Technical University, Novosibirsk, Russia
bakaev;xvorostov;razumnikova@corp.nstu.ru

Abstract. Measuring visual complexity (VC) of human-computer user interfac-
es (UIs) sees increasing development, as VC has been found to affect users’
cognitive load, aesthetical impressions and overall performance. Spatial alloca-
tion and ordering of UI elements is the major feature manipulated by an inter-
face designer, and in our paper we focus on perceived complexity of layouts.
Algorithmic Information Theory has justified the use of data compression algo-
rithms for generating metrics of VC as lengths of coded representations, so we
consider two established algorithms: RLE and Deflate. First, we propose the
method for obtaining coded representations of UI layouts based on decreasing
of visual fidelity that roughly corresponds to the “squint test” widely used in
practice. To confirm applicability of the method and the predictive power of the
compression algorithms, we ran two experimental surveys with over 4700 lay-
out configurations, 21 real websites, and 149 participants overall. We found that
the compression algorithms’ metrics were significant in VC models, but the
classical purely informational Hick’s law metric was even more influential. Un-
expectedly, algorithms with higher compression ratios that presumably come
closer to the “real” Kolmogorov complexity did not explain layouts’ VC per-
ception better. The proposed UI coding method and the analysis of the com-
pression algorithms’ metrics can contribute to user behavior modeling in HCI
and static testing of software UIs.

Keywords: Algorithmic Complexity, Static UI Analysis, Human-Computer In-
teraction, Information Processing.

1 Introduction

1.1 Visual Complexity in Human-Computer Interaction

A few decades ago, with the increasing ubiquity of computers and the growing number of
users, visual complexity (VC) started becoming a research field of its own, detaching itself
from the general studies of complex systems [1]. Nowadays it is well-known in human-
computer interaction (HCI) that perceived user interface VC significantly affects not just
cognitive load, but also user preferences, aesthetical and other affective impressions ([2]-
[5]). The general guideline in HCI is that all other things being equal, VC should be de-
creased (in some cases, a certain level of complexity should be maintained, due to reasons

47

of aesthetic perception). However, we so far lack universally accepted quantitative meas-
ure and the respective techniques for automated assessment of user interface VC, although
their development is largely seen as desirable [6].

One of the obstacles in tackling this problem is that VC is not universal and the
factors and features affecting it depend of the object being perceived. For instance, for
certain signs (hieroglyphs) these factors included area and, correspondingly, the num-
ber of lines and strokes, while for shapes of familiar objects it was the number of
turns [7]. Most current research works seem to focus on images (even more often, on
photos), while publications related to complexity in data visualization and user inter-
faces (UIs) are relatively scarce. As some examples, we can note [8] and [9], where
the authors proposed the formulas and developed software tools for calculating the UI
complexity values, as well as [10].

1.2 Complexity and Data Compression

Still, there are universal approaches in VC research and quantification, and they are
based on Shannon’s Information Theory and on Gestalt principles of perception [11].
The former provides robust quantitative apparatus for measuring information content
(calculating entropy), but it has been repeatedly shown that information-theoretic
complexity does not correspond to human visual perception well, particularly since it
does not consider spatial structures [12]. The latter has the concept of “visual simplic-
ity” as the foundational principle, and has been shown to match the humans’ “top-
down” perception of objects well. However, it used to suffer from lack of quantitative
methods, at least until the emergence of Algorithmic Information Theory (AIT),
which linked this approach to Kolmogorov algorithmic complexity [13].

With AIT it became possible to directly link the concepts of “simplicity” and “proba-
bility” and unite the two corresponding approaches. The complexity of a percept is the
length of the string that generates the percept and at the same time expressed through
Kolmogorov probability of the percept. The compression algorithm acts as a practical
substitute of the universal Turing machine, taking the compressed string (previously
produced with the same algorithm) to reproduce the original string. Kolmogorov com-
plexity is defined as the length of the shortest program needed to produce a string –
hence, the length of the compressed string can stand for the pseudo-Kolmogorov com-
plexity of the original string [11]. Higher compression ratios presumably allow the
compressed string’s length to approach the “real” Kolmogorov complexity.

1.3 Related Work and Research Question

The compression algorithm probably seeing the widest use for producing VC is JPEG
(as specified e.g. in ISO/IEC 10918-1:1994 standard), which was specifically de-
signed to consider particulars of images perception by humans. Some alternatives
include calculating Subband Entropy [14] or Fractal Dimension of the image, using
Zipf’s Law, preliminary edge detection filters application, etc. [15].

In HCI and UI analysis, the above approaches have been successfully applied to
images (JPEG compression algorithm, frequency-based entropy measures, image

48

types [15], etc.), textual content (characters recognition in fonts, graphic complexity
[16], etc.), high-order UI design measures (e.g. amount of whitespace in [2]) and so
on. Meanwhile, UI layouts have not been in the focus of quantitative VC research,
even though they are known to have significant impact on users’ perception of UIs
and are important for preserving their attained experience with a computer system
[17]. To the best of our knowledge, [18] was the only work to propose a layout com-
plexity metric, based on spatial allocation and diversity of UI elements, but this re-
search direction seemingly failed to gain momentum.

In our work we focus on UI layouts, exploring if humans’ perception of their com-
plexity can be well explained with the measures supplied by data compression algo-
rithms. In Methods, we briefly reiterate on the Hick’s law, acting as the baseline infor-
mation-theoretic measure, and describe the compression algorithms used in our study:
RLE-based one and classical Deflate. We further introduce our method for coding the
considered visual objects – UI layouts. Since cases were reported when vertical or hori-
zontal alignment of the same UI elements mattered in terms of visual search time [19],
we also investigate the different ways to convert two-dimensional layouts into bit string
representations. In Section 3, we describe experimental research we performed with the
model layouts and analyze the data we obtained from 78 participants. In Section 4, we
verify our findings with real UIs of 21 operating websites, assessed by 63 subjective
evaluators and coded according to the proposed method. In Conclusions, we summarize
our results, note limitations of our study and outline prospects for further research.

2 Methods

Almost immediately after its emergence, the Shannon’s Information Theory was applied
to psychological and perception problems. The prerequisite for using information con-
cepts in visual perception was measuring the information content of stimuli [11]. Argu-
ably the most influential undertaking with regard to the cognitive aspect was the one by
W.E. Hick (1952), who postulated that reaction time (RT) when choosing from equally
probable alternatives is proportional to the logarithm of their number (NH):

)1(log~ 2 HNRT (1)

Despite the demonstrated applicability of the Hick’s law for certain aspects related to
UI design, it currently has little use in HCI [20]. First, calculating the informational
content of stimuli in practice is generally more problematic. Second, it is believed that
since the information-theoretic approach is analytical by nature, it is fundamentally
limited in explaining human perception, which is mostly top-down: that is, focused on
higher-order images and structures. As we mentioned before, AIT made it possible to
bond Information Theory with Gestalt principles of perception, which are concerned
exactly with how visual sensory input is organized into a percept. Within this school,
it was empirically shown that the coded string lengths, the complexity measures, and
performance measures in experiments are highly correlated [11]. Thus it is natural to
assume that compressibility and complexity are linked in UIs as well.

49

2.1 The Compression Algorithms

Run-Length Encoding (RLE). RLE is one of the oldest and simplest algorithms for
lossless data compression, which was already in use for handling images in the 1960s.
The idea of the algorithm is relatively straightforward: runs of data are replaced with
a single data value and the count of how many times it’s repeated. Runs are sequences
in which the same data value occurs several times, and these are quite common in
icons, line drawings and other imagery with large mono-colored areas. The algorithm
doesn’t deal with 2D images, but can work with the linear string of bytes containing
serialized rows of the image. In the best case, a string of some 64 repeating value
would be compressed into 2 bits, i.e. providing compression ratio of 32 or data rate
saving of 0.96875. It should be noted that for some kinds of files, such as high-quality
photographic images, the RLE algorithm compression may even increase the volume,
due to lack of runs. Based on RLE encoding principle, a number of more sophisticat-
ed algorithms and compressed data file formats were developed (.TGA, .PCX, etc.),
but in our work we are going to employ a simple and straightforward RLE implemen-
tation (see in Appendix A).

Deflate. Deflate is a lossless data compression algorithm that is based on combination
of LZ77 algorithm and Huffman coding. It was developed by P. Katz, who used it in
PKZIP archiving software, and was later defined in RFC 1951 specification. It is free
from patent protections, so many compressed data formats (e.g. .PNG images) rely on
Deflate. Today’s popular implementation of the algorithm is in widely used zlib soft-
ware library, which is also capable of compressing data according to the somewhat
adjusted RFC 1950 and RFC 1952 (gzip) variations.

In the first stage of Deflate, LZ77-based “sliding window” approach is used to re-
place duplicate series of data (strings) with back-references to a single copy of that
data. In the second stage, commonly used symbols are replaced with shorted represen-
tations and less common symbols – with longer ones, based on Huffman coding
method. The Huffman algorithm (which doesn’t guarantee optimal result, but has very
reasonable time complexity) produces a variable-length code table for encoding
source symbols. The Huffman codes are “prefix-free”, i.e. an encoding bit string is
never a prefix for another encoding bit string. The Huffman coding is now wide-
spread, being used in compression of many kinds of data, especially photos (JPEG)
and multimedia, as well as in data transmission protocols. At the same time, it does
provide good data compression ratio for small alphabet sizes.

For the purposes of current research work, we relied on PHP’s standard
zlib_encode function, called with ZLIB_ENCODING_RAW parameter (correspond-
ing to the RFC 1951 specification), to obtain the compressed string.

2.2 The “Squint” Coarsening Method

To turn layouts (as visual objects) into string representation, in our study we propose
a novel method, which is based on decrease of UI visual fidelity (coarsening) – over-
laying 2D grid. Layout grids with blocks aligned vertically and/or horizontally, are

50

de-facto standard in modern interface design, and they are implemented in Bootstrap,
Axure and many other tools. Each cells of the overlaid grid contain either 1 (the area
has interface elements) or 0 (few or no perceived interface elements). Such uniformity
allows focusing on layout and eliminating other factors, such as perception of colors,
diversity of elements, etc. Naturally, it makes the method inadequate for UI studies
that involve user tasks and actual interactions, textual content, etc.

At the same time, the aforementioned coarse model still reflects most layout-
related aspects of real UIs: visual organization (hierarchy), elements’ weights and
forms, edges, whitespace, etc. Perception-wise, Gestalt principles (particularly prox-
imity and continuation) remain legitimate, while most UI grid quality/layout metrics
can be calculated on the model: balance, symmetry, alignment points, etc. The grid
model also supports scanning (thus matching the users’ prevalent way of interacting
with new web pages), during which the quick but persistent impressions of the UI are
known to be made.

Overall, the method can be said to correspond to the informal “squint test” popular in
practical UI design, which allows estimating the quality of interface elements’ visual
organization (see software implementation of the coarsening e.g. in [21]). The approach
also starts seeing methodological use in research – for instance, in [22] they used similar
method in studying user attention distribution in interaction with 2D graphic UIs.

2.3 Hypotheses and the Experimental Material

Based on the research objectives and the related work, we formulated the following
hypotheses for our experimental investigation:

1. Lengths of strings output by the data compression algorithms should explain lay-
outs’ complexity perception in humans better than the baseline measure. For the
latter we are using the purely informational Hick’s law, lacking the spatial alloca-
tion consideration.

2. The algorithm providing higher data compression ratio better explains the layout
complexity perception, since its output is closer to the algorithmic complexity.

3. The conversion of two-dimensional layout into bit string sent to a compression al-
gorithm is uniform for vertical and horizontal dimensions (we consider only these
2 types of the filling curve) – i.e. it does not consistently affect the measure’s ex-
planatory power.

Layouts (Experiment 1). For the model testing of the hypotheses and assessment of
the coarsening method’s applicability, we used two-dimensional grids (all square, to
better align with the hypothesis #3). In the grid, square cells of the same sizes were
allocated, most of which were white, corresponding to zeros, while a varying number
of them were filled with blue color, corresponding to ones. In Fig. 1 we show exam-
ple of the grid, with the corresponding numerical values overlaying the cells (in the
experiment they did not show to participants). The two-dimension matrix correspond-
ing to the example is: [[0,0,1,0,0],[1,0,0,0,1],[0,0,1,0,0],[0,1,0,1,1],[0,1,0,0,0]].

51

Fig. 1. Example of the grid with explanation of the numerical values corresponding to the cells.

Websites (Experiment 2). The goals were to check if our model results generalize to
real UIs and if the coarsening method can be feasible in practice. Since there are
many interfering factors, not just layouts, we should expect to find smaller statistical
effects (this is why our first experiment was with models). We chose to focus on web
interfaces, so that the popular JPEG algorithm could be more dependable in producing
the additional baseline measure. So, we employed 21 operating websites of 11 Ger-
man universities and 10 Russian ones – in all cases, English versions were used. The
websites for the experiment were manually selected, with the requirements that 1) the
universities are not too well-known, so that their reputations do not bias the evalua-
tions; 2) the designs are sufficiently diverse in terms of layout, colors, images, etc.

3 Experiment 1: Layouts

3.1 Experiment Description

Participants. The overall number of valid subjects in our experimental sessions un-
dertaken within one month was 78 (57 females, 20 males, 1 undefined). Most of them
were Bachelor and Master students of Novosibirsk State Technical University, who
took part in the experiment voluntary (no random selection was performed). The sub-
jects’ age ranged from 17 to 65, mean 21.7 (SD = 2.03). All the participants had nor-
mal or corrected to normal vision and reasonable experience in IT usage. Most of the
participants worked from desktop computers installed in the university computer
rooms. There were also 17 other registrations with the online surveying system, but
none of those subjects completed the assignment (on average, each of them completed
only 4.4% of the assigned evaluations), so they were discarded from the experiment.

Design. The experiment used within-subjects design. The main independent variables
were:

 Number of filled cells in the grid (the “ones” in the matrix), ranging from 4 to 13: N;
 Number of all cells in the grid (elements in the matrix). We used two levels, 25

(5*5 grid) and 36 (6*6 grid): S0;

52

 Layout configuration – i.e. allocation of filled cells in the grid, which was per-
formed randomly.

For the purposes of the compression algorithms application, the layout configurations
needed to be converted into bit string. We used two ways to do that: by rows (matrix
[[1,1],[0,0]] becomes [1100] string) and by columns (the same matrix becomes
[1010]), in both cases starting from the top left element. So, we also got several “de-
rived” independent variables in the experiment:

 Lengths of the row- and column-based bit strings compressed with the RLE-based
algorithm: LRLE-R and LRLE-C;

 Lengths of the row- and column-based bit strings compressed with the Deflate
algorithm: LD-R and LD-C;

 The corresponding data compression ratios for the algorithms: CRLE-R, CRLE-C, CD-R,
CD-C.

The dependent variable was Complexity – the subjects’ subjective evaluations of present-
ed layouts complexity, ranging from 1 (lowest complexity) to 5 (highest complexity).

Procedure. To support the experimental procedure, we used our specially developed
web-based software. Before the experiment, we used it to collect data on the partici-
pants (gender, age, university major, etc.). In each trial, the subject was shown a lay-
out with random allocation of the colored cells (configuration) and varying N and S 0
and asked to evaluate it per the Complexity scale. The values of all the variables
would be saved be the software, and the participant moved to the next trial. The con-
figurations were independent between the trials, and the overall number of layouts to
be evaluated by each subject was set to 100. The interface of the software could be
either in Russian or in English, with the scale also dubbed in German.

3.2 Descriptive Statistics

The total number of layouts used in the experiment was 4734. The subjects submitted
7800 evaluations in total, and averaged evaluations for 4702 layouts (99.3%) were
considered valid. Save for outliers, completing each trial on average took a participant
13.69 s, so the average time spent on an experimental session was 22.82 minutes.

The averaged value for Complexity in the experiment was 2.58 (SD = 0.96)1. The Pear-
son correlation between S0 and N was significant, but quite low (r = 0.096, p < 0.001).

To test the hypothesis #3 (differences for row- and column-based strings compres-
sion) we used t-tests, which found no statistically significant differences for LRLE-R
and LRLE-C (t4701 = -0.808, p = 0.419, r = 0.708) or LD-R and LD-C (t4701 = -1.035,

1 We are aware about the controversy existing in the research community about treating Likert

and other ordinal scales as rational ones for some methods. In our analysis we tried to use
methods appropriate for ordinal scales when possible, but nevertheless were not restricted to
them, if more robust analysis could be performed. We ask the readers to judge for them-
selves whether the potential bias in the results overweighs their usefulness.

53

p = 0.301, r = 0.590). So, in the further analysis we used the “best” values, equal to
the minimal length or maximal compression ratio for each string:

 };min{ CRLERRLERLE LLL (2)

 };min{ CDRDD LLL (3)

 };max{ CRLERRLERLE CCC (4)

 };max{ CDRDD CCC (5)

Ranges, means and standard deviations for the considered independent variables are
shown in Table 1. We found statistically significant Pearson’s correlations for LRLE
with LD (r = 0.718, p < 0.001), log2N with LRLE (r = 0.736, p < 0.001), and log2N with
LD (r = 0.702, p < 0.001). At the same time, t-test suggested statistically significant
difference between CRLE and CD (t4701 = -87.5, p < 0.001, r = 0.734). Since the com-
pression ratios for the two algorithms in the experiment were different, the testing of
our hypothesis #2 would be possible.

3.3 Effects of Independent Variables

In Table 1 we also show Pearson correlations between Complexity and the respective
independent variables, all of which were significant (p < 0.001).

Table 1. Descriptive statistics and the correlations for the independent variables (experiment 1).

Variable Range Mean (SD) r (Complexity)

S0 25; 36 - 0.163

N 4-13 7.46 (2.01) 0.535
log2N 2.00-3.70 2.84 (0.42) 0.539

LRLE 8-30 17.14 (3.54) 0.531

LD 8-20 13.95 (1.99) 0.440

CRLE 1.09-4.50 1.85 (0.40) -0.400
CD 1.39-4.00 2.23 (0.42) -0.199

With respect to the hypothesis #1, we can note that the strongest correlation (r = 0.539)
was found for log2N, which suggests Hick’s law is rather applicable for explaining the
perception of layouts’ complexity. However, the differences in correlations are marginal
compared to the ones found for N and LRLE, which implies the need for further analysis.

With respect to the hypothesis #2, while Deflate algorithm provided significantly bet-
ter compression ratio (mean of 2.23 vs. 1.85 for RLE), thus finding more regularities in
the layouts. However, its correlation with the perceived complexity was notably weaker
than for RLE algorithm. We will further elaborate on this in the regression analysis.

54

3.4 Regression Analysis

To explore whether the variables considered in the paper could explain layout co m-
plexity perception, we performed regression analysis for Complexity with two groups
of factors. The informational component was log2N, as having the highest correlation
with Complexity and being best theoretically justified by the Hick’s law. The regres-
sion model with this single factor was significant (F1,4700 = 1926, p < 0.001), but had
relatively low R2 = 0.291:

 NComplexity 2log24.195.0 . (6)

Further, we attempted regression with all 7 independent variables (see in Table 1) as
factors. We used Backwards variable selection method, which led to the model with
just two significant factors: log2N (Beta = 0.323, p < 0.001) and LRLE (Beta = 0.294,
p < 0.001). With respect to the hypothesis #2, we should specially note that the LD
factor was not significant (p = 0.552). The model had somehow improved R2 = 0.330
(F2,4699 = 1158, R2

adj = 0.330):

 RLELNComplexity 08.0log74.09.0 2 . (7)

To evaluate the quality of the two models that had different number of factors (k), we
also calculated Akaike Information Criterion (AIC) using the following formulation
for the linear regression:

)ln(2 RSSnkAIC , (8)

where n is sample size (in our case, n = 4702), RSS are the respective residual
sums of squares. AIC for (6) amounted to 37758, while AIC for (7) was 37490, which
suggests that the “information loss” of the second model is lower and it should be
preferred over the first one.

4 Experiment 2: Websites

The first stage was experimental survey in which we collected subjective evaluations
for website homepages, per dimensions related to visual complexity (see [23] for
more detail). In the second stage, the web UIs were processed by annotators to be
converted into coded representations.

4.1 Experiment Description (Subjective Complexity)

Participants. In total, 63 participants (30 male, 33 female) provided their evaluations
of the websites’ complexity. The convenience sampling method was applied, with
most of the participants being students or universities staff members. The self-denoted
age ranged from 19 to 72, mean 27.6, SD = 8.07. The self-denoted nationalities were
Russian (65.1%), German (17.5%), Argentinian (4.8%), and others (including Bulgar-

55

ian, Vietnamese, Korean, etc.). Submissions by another 13 participants were discard-
ed as being incomplete (none of them had at least 50% of websites evaluated).

Design. Since providing the evaluations in absolute numbers would be unattainable
for the participants who were not web design professionals, we chose to rely on ordi-
nal values. For each of the following statements, 7-point Likert scale was used (1
being “completely disagree”, 7 – “completely agree”), resulting in the respective or-
dinal variables:

 “This webpage has many elements.” SElements
 “The elements in the webpage are very diverse.” SVocab
 “The elements in the webpage are well-ordered.” SOrder
 “The webpage has a lot of text.” SText
 “The webpage has a lot of graphics.” SImg
 “The webpage has a lot of whitespace.” SWhite
 “The webpage appears very complex.” SComplex

In the current work, we only used SComplex as the dependent variable in the experi-
ment 2. We also employed SElements and SWhite to extra check the applicability of
the proposed coarsening method implementation, which we describe further.

Since for web UIs were are able to use the JPEG algorithm measure, we introduced
two additional independent variables:

 The size of JPEG-100 compressed file, measured in MB: LJPEG;
 The corresponding compression ratio, calculated as the area S (in pixels) of the

screenshot divided by the JPEG file size (in bytes): CJPEG.

Procedure. The survey to collect data was implemented using LimeSurvey, and the
participants used a web browser to interact with it. Some of them worked in university
computer rooms, while the others used their own computer equipment with varying
screen resolutions, to better represent the real context of use. Each subject was asked
to evaluate the screenshots of the 21 websites’ homepages (presented one by one in
random order) per the 7 subjective scales. On average, it took each participant 30.3
minutes to complete the survey, and the data collection session lasted 19 days overall.
We used screenshots, not the actual websites, to ensure uniformity of the experi-
mental material between the participants.

4.2 Experiment Description (Layout Annotation)

Participants. In the second stage of the experiment, we employed 8 annotators (4
male, 4 female), whose ages ranged from 18 to 21 (mean 19.0, SD = 1.0). They were
students of Novosibirsk State Technical University who volunteered to participate in
this study as part of their practical training course. All the participants worked simul-
taneously in a same room, under instructor’s supervision.

56

Design. The independent variables resulted from the annotation of the UIs:

 Number of rows in the overlaid grid: W_SR;
 Number of columns in the overlaid grid: W_SC;
 “Configuration” – the placement of 0s and 1s in the grid cells.

From these, we got the “derived” independent variables:

 Number of cells containing 1s: W_N;
 Number of all cells in the grid (W_SR multiplied by W_SC): W_S0;
 Lengths of the row- and column-based bit strings compressed with the RLE-based

algorithm: W_LRLE-R and W_LRLE-C;
 Lengths of the row- and column-based bit strings compressed with the Deflate

algorithm: W_LD-R and W_LD-C;
 The corresponding data compression ratios for the algorithms: W_CRLE-R,

W_CRLE-C, W_CD-R, W_CD-C.

Procedure. The screenshots of the websites were printed out in color on A4 format
paper sheets (since the two websites were not found to be valid, the total number of
annotated websites was 19). The participants were instructed to put the provided trac-
ing paper A4 format sheets over the printed out screenshots and use the pencils to
draw grid layouts marking 0 or 1 in each cell. The numbers of rows and columns in
the grid were to be chosen individually by each annotator and each screenshot, de-
pending on their impression of the layout design grid. However, the participants were
told that more rows and columns are generally preferred over less. In the grid cells, 0s
and 1s were also to be assigned subjectively, depending if the cell’s interior was most-
ly whitespace (0) or interface elements/content (1). The order in which each of the 8
annotators processed the 19 screenshots was randomized. Some examples of the an-
notated websites are presented in Appendix B.

4.3 Descriptive Statistics

In the first stage of the experiment, we collected 1323 complexity evaluations for the
21 websites. Websites #9 and #14 were removed from further study due to technical
problems with the screenshots (90.5% valid). In the second stage, we collected 152
annotations for the remaining 19 website screenshots. On overall, it took the annota-
tors about 1 hour to finish their job.

The averaged value for SComplex (the complexity scale in this experiment ranged
from 1 to 7) was 3.61 (SD = 0.77). The Pearson correlation between W_S0 and W_N
was highly significant (r = 0.929, p < 0.001).

We used t-tests to check statistical significance of differences in compression for
row- and column-based strings. We found no statistically significant difference between
W_LRLE-R and W_LRLE-C (t151 = 1.222, p = 0.224, r = 0.807). However, the difference
between W_LD-R and W_LD-C was significant (t4701 = -3.873, p < 0.001, r = 0.951), the

57

mean lengths being 13.37 and 13.97 respectively. Still, we decided to use the “best”
values for both algorithms (W_LRLE and W_LD), in correspondence with the experiment 1.

Again, we found statistically significant Pearson’s correlations for W_LRLE with
W_LD (r = 0.941, p < 0.001), log2W_N with W_LRLE (r = 0.735, p < 0.001), and
log2W_N with W_LD (r = 0.657, p < 0.001). LJPEG had no significant correlations (at

 = 0.05) with either of these three variables, but its positive correlation with W_S0
was found to be significant (r = 0.486, p = 0.035), which suggests validity of this
“screenshot length” measure provided by the annotators.

In this experiment, t-test showed no statistically significant difference between
W_CRLE and W_CD (p = 0.983). However, CJPEG was found to be significantly different
(at = 0.08) from both W_CRLE (t18 = -1.86, p = 0.08) and W_CD (t18 = -2.1, p = 0.05).

4.4 Effects of Independent Variables

In Table 2 we show Pearson correlations between SComplex and the respective inde-
pendent variables, but in this experiment none of the correlations were significant at

 = 0.05, which is explained in particular by the small sample size.

Table 2. Descriptive statistics and the correlations for the independent variables (experiment 2).

Variable Range Mean (SD) r (SComplex)

W_S0 22.25-54.75 34.22 (9.53) 0.245

W_N 12.5-32.00 21.82 (6.04) 0.343
log2W_N 3.64-5.0 4.39 (0.42) 0.349

W_LRLE 6.75-22.5 15.14 (4.06) 0.149

W_LD 8.25-17.38 12.94 (2.23) 0.269

LJPEG 0.56-9.11 1.68 (1.95) 0.332

W_CRLE 1.80-3.74 2.58 (0.57) 0.058

W_CD 1.82-3.56 2.58 (0.48) 0.126

CJPEG 1.19-3.18 2.22 (0.57) -0.262

Just like in the first experiment, the strongest correlation with complexity (r = 0.349)
was found for log2W_N. The correlation for LJPEG that we considered as the baseline
was somehow weaker (r = 0.332).

Hypothesis #2 couldn’t be validated by strict analogy with the first experiment,
since in the second one there was no significant difference between the compression
ratios provided by RLE and Deflate algorithms. But we should note that while JPEG
algorithm compression ratio was significantly lower on average, CJPEG had stronger
correlation (r = -0.262) with SComplex, in comparison with W_CRLE and W_CD.

Additional analysis was performed to explore relations between the number of el-
ements specified by participants of the subjective complexity evaluation stage and the
annotators’ results. We found significant correlations between SElements and W_N

58

(r = 0.719, p = 0.001), which was stronger than the one between SElements and W_S0
(r = 0.562, p = 0.012). The correlation between SWhite and the calculated whitespace
measure (1 - W_N/W_S0) was also significant (r = 0.531, p = 0.019). These results
suggest that whitespace was mostly annotated as grid cells with 0s, while the interface
elements visible to the complexity evaluators were annotated as grid cells with 1s.

4.5 Regression Analysis

Again, first we performed regression analysis with the baseline factors. The model
with log2W_N was not significant (p = 0.143) and had R2 = 0.122. The model with
LJPEG had lower significance (p = 0.164) and R2 = 0.110. Notably, the regression
models for the other factors we considered (W_S0, W_N, W_LRLE, W_LD) had even
lower significances and R2 values.

Further, we attempted regression with all 9 independent variables (see in Table 2)
as factors. We used Backwards variable selection method, which now led to the mod-
el with three significant factors (at = 0.07): log2W_N (Beta = 0.619, p = 0.067),
W_LRLE (Beta = -1.534, p = 0.043), W_LD (Beta = 1.306, p = 0.054). This model had
R2 = 0.339 (F3,15 = 2.57, R2

adj = 0.207, AIC = 43.2):

 DRLE LWLWNWSComplex _45.0_29.0_log15.185.2 2 (9)

However, among the intermediate models considered within the Backwards selection,
there was a model with higher R2

adj = 0.263 and lower AIC = 42.5. The factors in this
model (F4,14 = 2.61, R2 = 0.427) were log2N (Beta = 0.498, p = 0.134), W_LRLE (Be-
ta = -1.694, p = 0.026), W_LD (Beta = 1.471, p = 0.031), and LJPEG (Beta = 0.328,
p = 0.165):

JPEGD

RLE

LLW
LWNWSComplex

13.0_51.0
_32.0_log92.037.2 2 (10)

5 Conclusion

In our paper we examined perceived visual complexity of UI layouts, which are a
major controlled feature for every human-computer interface designer. Particularly,
we sought to introduce data compression algorithms, which with respect to complexi-
ty have both solid theoretical justification (AIT) and wide practical application
(JPEG-based metrics). So, we proposed the UI layouts coding method and employed
the RLE and Deflate algorithms to produce compressed strings. The chosen algorithms
are well established in image compression and presumably have advantage over infor-
mation entropy-based compressibility measures. Our analysis of the experimental data
suggests the following conclusions per the hypotheses formulated in the study:

Hypothesis #1. The compressed strings’ lengths do explain layouts’ complexity
perception in humans, as the corresponding factors were significant in regressions for

59

the model (7) and real UIs (9). However, the correlations (Table 1 and 2) suggest that
the Hick’s law factor is even stronger connected to the perceived layout complexity.

Hypothesis #2. Unexpectedly, algorithms that showed higher compression ratios
had weaker connection to the perceived complexity (Table 1 and 2). LD was not sig-
nificant in regression (7), unlike LRLE, while LJPEG had the lowest significance in (10).

Hypothesis #3. Generally, matrix conversion to string representation was no dif-
ferent by rows or by columns, with the only exception of the 4.4% difference for De-
flate algorithm in experiment 2, where the sample size was relatively small.

Hence, we see the main contributions of our paper as the following:

1. We proposed the “squint” coarsening method for coding UI layouts into binary
strings and demonstrated its use with real web interfaces. Practical applicability of
the method is supported by highly significant correlation (r = 0.719) between the
subjectively assessed number of interface elements and the number of annotated
cells containing 1s, as well as significant correlation (r = 0.531) between the sub-
jective amount of whitespace and the share of annotated cells containing 0s.

2. We demonstrated that compression algorithms can provide metrics that improve
prediction of perceived VC of UI layouts. At the same time, we found that the clas-
sical Hick’s law informational metric is well applicable as the main factor, which
may imply its certain “revival” in HCI.

3. We found that better compression algorithms, which presumably come closer to
the “real” Kolmogorov complexity, do not explain layouts VC perception better. It
may mean that layouts are a specific type of visual objects [24].

4. We found that the way two-dimensional matrix representing the modelled UI lay-
out is converted into bit string (by rows or by columns) does not affect the com-
pression measure’s explaining power with regard to layouts VC.

We see the main limitation of our study in employment of ordinal scales to measure
VC of both model representation and web UIs. We plan to develop the approach for
using interval scale, presumably based on tasks performance time. Also, the sample
size in the websites experiment was relatively small, so the found statistical effects
were not always convincing. Our further prospects include software implementation
of the proposed coarsening method, so that coded representations for web UI screen-
shots could be collected automatically. We also plan to explore whether the coarsen-
ing method that we proposed for WUI layouts, could be suitable for producing coded
representations for other types of visual objects.

Acknowledgement. The reported study was funded by Russian Ministry of Education
and Science, according to the research project No. 2.2327.2017/4.6.

References

1. B. Castellani. Brian Castellani on the Complexity Sciences. Theory, Culture & Society,
Oct. 2014 (2014).

60

2. Reinecke, K. et al.: Predicting users' first impressions of website aesthetics with a quantifi-
cation of perceived visual complexity and colorfulness. Proc. of the ACM SIGCHI confer-
ence on human factors in computing systems, 2049-2058 (2013).

3. Machado, P. et al.: Computerized measures of visual complexity. Acta psychologica, 160,
43-57 (2015).

4. Michailidou, E., Harper, S., Bechhofer, S.: Visual complexity and aesthetic perception of
web pages. In Proc. of the 26th ACM Int Conf on Design of communication, 215-224 (2008).

5. Taba, S.E.S. et al: An exploratory study on the relation between user interface complexity
and the perceived quality. In Int. Conf. on Web Engineering, 370-379. Springer (2014).

6. Wu, O., Hu, W., Shi, L.: Measuring the visual complexities of web pages. ACM Transac-
tions on the Web (TWEB), 7(1), p.1 (2013).

7. Chikhman, V. et al: Complexity of images: Experimental and computational estimates
compared. Perception, 41(6), 631-647 (2012).

8. Alemerien, K., Magel, K.: GUIEvaluator: A Metric-tool for Evaluating the Complexity of
Graphical User Interfaces. In SEKE, 13-18 (2014).

9. Stickel, C., Ebner, M., & Holzinger, A.: The XAOS metric–understanding visual complex-
ity as measure of usability. In Symposium of the Austrian HCI and Usability Engineering
Group, 278-290. Springer, Berlin, Heidelberg (2010).

10. Miniukovich, A., De Angeli, A. : Quantification of interface visual complexity. In Proc. of
the 2014 ACM Int. Working Conf. on advanced visual interfaces, 153-160 (2014).

11. Donderi, D. C.: Visual complexity: a review. Psychological bulletin, 132(1), 73 (2006).
12. Yu, H., Winkler, S.: Image complexity and spatial information. In IEEE Fifth Int. Work-

shop on Quality of Multimedia Experience (QoMEX), 12-17 (2013).
13. Solomonoff, R.: The application of algorithmic probability to problems in artificial intelli-

gence. In Machine Intelligence and Pattern Recognition, 4, 473-491 (1986).
14. Rosenholtz, R., Li, Y., Nakano, L.: Measuring visual clutter. J. of Vision, 7(2), 1-22 (2007).
15. Carballal, A. et al.: Distinguishing paintings from photographs by complexity estimates.

Neural Computing and Applications, 1-13 (2016),
16. Chang, L.Y., Chen, Y.C., Perfetti, C.A. GraphCom: A multidimensional measure of graphic

complexity applied to 131 written languages. Behavior res. methods, 50(1), 427-449 (2018).
17. Heil, S., Bakaev, M., Gaedke, M.: Measuring and ensuring similarity of user interfaces: the

impact of web layout. Lecture Notes in Computer Science, vol. 10041, 252-260 (2016).
18. Comber, T., Maltby, J.R.: Layout complexity: does it measure usability?. In Human-

Computer Interaction INTERACT’97, 623-626. Springer, Boston, MA (1997).
19. Michalski, R., Grobelny, J., & Karwowski, W.: The effects of graphical interface design

characteristics on human–computer interaction task efficiency. International Journal of In-
dustrial Ergonomics, 36(11), 959-977 (2006).

20. Seow, S.C.: Information theoretic models of HCI: a comparison of the Hick-Hyman law
and Fitts' law. Human-Computer Interaction, 20(3), 315-352 (2005).

21. Kim N.W. et al. BubbleView: an interface for crowdsourcing image importance maps and
tracking visual attention. ACM Transactions on Computer-Human Interaction (TOCHI),
24(5), Art. 36 (2017).

22. Xu, P., Sugano, Y., Bulling, A.: Spatio-temporal modeling and prediction of visual atten-
tion in graphical user interfaces. Proc. of the ACM CHI Conference on Human Factors in
Computing Systems, 3299-3310 (2016).

23. M. Bakaev et al.: HCI Vision for Automated Analysis and Mining of Web User Interfaces.
Proc. Int. Conf. on Web Engineering (ICWE), 136-144. Springer, Cham (2018).

24. Simon H.A.: Complexity and the representation of patterned sequences of symbols. Psy-
cho-logical review, 79(5), 369 (1972).

61

Appendix A

The encode function implements simple RLE algorithm compression. The input vari-
able for the function is binary string.

function encode($input)
{

if (!$input) {
return '';

}

$output = '';
$prev = $letter = null;
$count = 1;
foreach (str_split($input) as $letter) {

if ($letter === $prev) {
$count++;

} else {
if ($count > 1) {

$output .= $count;
}
$output .= $prev;
$count = 1;

}
$prev = $letter;

}

if ($count > 1) {
$output .= $count;

}

$output .= $letter;
return $output;

}

62

Appendix B

In Fig. B.1 we demonstrate the annotation process, in which coded representations
were provided for the web UIs. Fig. B.2 shows screenshot of website #2 (a German
university), while in Fig. B.3 the same screenshot is presented with the annotated
tracing paper. Fig. B.4 and Fig. B.5 provide the same illustrative example for website
#21 (a Russian university).

Fig. B.1. The annotators working on the printed out websites screenshots.

Fig. B.2. Initial screenshot of website #2 homepage.

63

Fig. B.3. An annotated screenshot for website #2.

64

Fig. B.4. Initial screenshot of website #21 homepage.

65

Fig. B.5. An annotated screenshot for website #21.

66

Case-Based Genetic Optimization of Web User Interfaces

Maxim Bakaev [0000-0002-1889-0692] and Vladimir Khvorostov

Novosibirsk State Technical University, Novosibirsk, Russia
bakaev;xvorostov @corp.nstu.ru

Abstract. The combination of case-based approach and genetic optimization
can provide significant boost to effectiveness of computer-aided design of web
user interfaces. However, their integration in web design domain requires cer-
tain sophistication, since parts of available solutions cannot be reused directly,
due to technical and legal obstacles. This article describes evolutionary algo-
rithm for automatic generation of website designs, which treats parameters of
functionality, layout and visual appearance as the variables. The structure of the
chromosome is devised, allowing representation of websites’ properties in the
above three manipulated aspects and facilitating easy application of the genetic
operators. The authors also perform feature engineering for web projects and
construct the case base as well as supplementary repositories of functional
components and filler-up content. The implementation of the approach is
demonstrated with the means provided by the popular Drupal web framework.
The results of the study can empower case-based reuse of existing web designs
and therefore be of interest to both AI researchers and software engineers.

Keywords: Web User Interface Design, Case-Based Reasoning, Software
Components, Drupal Framework.

1 Introduction

The continuing exponential growth in the amount of data is accompanied by increase
in diversity of data sources and data models. This, together with the forthcoming “Big
Interaction”, with its multiplicity of user tasks and characteristics, of interface devices
and contexts of use, may soon render hand-making of all the necessary human-
computer interfaces unfeasible. Discrete optimization methods are seen quite promis-
ing for intelligent computer-aided design of interaction, but the combinatorial number
of possible solutions is huge even for relatively simple user interface (UI) design
problems (Oulasvirta, 2017). Increasingly, genetic algorithms are used as effective
tool for solving optimization problems, and there are reports of their successful use
for conventional websites designs (Qu, 2015), whose UIs are not particularly creative,
but mostly provide data I/O.

Genetic algorithms are based on repeated application of the genetic operators –
generally these are selection of candidates for reproduction, crossover (producing
child solutions incorporating features of numerous parents) and mutation (introduc-
tion of random or directed variations in the features). Their superset is evolutionary

67

algorithms (EAs), which are being successfully used in programming, engineering,
website design (Guo et al., 2016), data mining and classification (Freitas, 2013), natu-
ral language processing, machine learning, intelligent and recommender systems, as
well as many other domains (Coello, 2015). One of the most popular methods for
website design improvement, A/B Testing, which measures performance of slightly
different design versions in the real environment, is essentially an informal EA as
well. A/B Testing does not generally employ a genetic representation of designs, and
one of its weaknesses is lack of a systematic approach to recombination, so that the
method always risks turning into a random walk.

Most types of EAs rely on special data structures that represent properties of a can-
didate solution – chromosomes, in which concrete values comprise the solution’s
genotype. Individual genes that constitute the chromosome may be of different types,
depending of a particular problem, and the genetic operators need to take into consid-
eration the types’ boundaries and the allowed values – alleles. Hence, just as design of
data structures is of crucial importance in software engineering, the choice of the
chromosome structure can remarkably affect EA’s convergence, speed and the end
result’s quality (Michalewicz & Hartley, 1996).

So, an archetypal EA incorporates the following stages:

1. Initialization – creation of the first generation (initial population), which can be ei-
ther random or based on some distinguished existing cases (Kazimipour et al.,
2015), for better convergence to global optimum or faster performance.

2. Selection of best-fit individuals for reproduction (parents) based on evaluation of
their fitness, which is performed either in real world context or, more commonly,
with specially formulated fitness functions.

3. Reproduction of parents to create individuals of the next generation, in which mu-
tation and crossover are used. If the algorithm’s termination condition (sufficient
quality of the final solution or time limit) is not met, it goes back to the previous
step and repeats.

Fitness function (FF) is central for the ultimate EA success: it must both fully repre-
sent the optimization goal and be as easily computable as possible. In domains that
deal with human preferences and capacities, such as WUI design, specification of FF
is far from trivial, especially given the diversity of user characteristics and tasks. In-
teractive Evolutionary Computation, which basically delegates FF evaluation to hu-
mans, may slow down the algorithm considerably, so pre-trained user behavior mod-
els are often seen as a solution (Bakaev et al., 2017b). Yet another way to represent
the ever-changing “environment” that the candidate designs must fit to, is exploiting
operating websites with that the users actually interact. The assumption here is that
surviving web projects have more or less successfully adapted to their target users’
preferences and needs. The degree of the successfulness can be automatically estimat-
ed from website’s interaction statistics and popularity, representing the dynamic
quality-in-use (Bakaev et al., 2017a), while the static quality-as-is can be assessed
based on static design metrics (Ivory & Hearst, 2002). However, directly employing
these well-fit examples as parents in the EA and reusing their parts is rather problem-
atic in the web design domain, due to technical (lack of access to the website’s back-

68

office and server-side code) and legal (copyright protection) reasons. Instead, measure
of genotypic or phenotypic similarity with the example solutions can be included as
one of the components in the FF. A notable example of such approach was once im-
plemented in SUPPLE intelligent system for UI automatic generation (Gajos et al.,
2005): the optimized goal function could incorporate the metric of similarity with the
previous version of UI design – in SUPPLE’s case, to maintain familiarity for its us-
ers. The metric was linear combination of pairwise similarities between interface
widgets, whose features included language, orientation, geometry, etc.

The number of operational websites accessible on the World Wide Web is current-
ly estimated as 100-250 millions, so there should be no shortage of well-fit design
examples for any kind of target users and tasks. The problem is actually the opposite:
even despite the recent emergence of design mining field that focuses on extraction of
design patterns and trends from large collections of design examples, there is lack of
repositories or services capable of finding existing solutions relevant to a new pro-
ject’s UI design context. We believe that the problem could be resolved by supple-
menting the WUI evolutionary optimization algorithm with case-based reasoning
(CBR) approach that has shown successful use in both software and web engineering
(Rocha et al., 2014; Renzis et al., 2016), WUI development (Marir, 2012), as well as
in many non-IT domains. More detailed justification on CBR applicability for WUI
design can be found in one of our previous works (Bakaev, 2018a). The classically
identified stages in CBR can be summarized as follows (Mantaras et al., 2005):

 Retrieve: describe a new problem and find similar problems with known solutions
in a case base (CB);

 Reuse: adapt the solutions of the retrieved problems to the current problem, in an
assumption that similar problems have similar solutions;

 Revise: evaluate the new solution and possibly repeat the previous stages;
 Retain: store the results as a new case.

Case thus equals parameterized problem plus one or several solutions, each of which
can be supplemented with quality – i.e. how good the solution was in resolving the
problem. The retrieval stage is arguably what most today’s CBR-related research
focuses on, and to the extent of our knowledge there is lack of techniques for adapta-
tion of the retrieved WUI designs. Or rather, due to the technical and legal impedi-
ments we’ve mentioned above, it’s the new solution that has to be adapted to the ex-
emplary designs. For instance, the database of the compelling design mining Web-
zeigeist tool (Kumar et al., 2013) that implemented a kind of design scraping and
searching engine, presumably contained millions of web pages. However, it allows
searching by technicalities, such as page aspect ratio or element styles, but not by
domain- or user-related aspects. This, effectively, does not allow supporting the CBR
approach, is no designs appropriate for a particular problem specification can be re-
trieved. The same holds for web design frameworks; and while they provide rich librar-
ies of interface elements (icons, buttons, form fields, etc.), neither they can aid in adap-
tation of a chosen design for a particular user group or to resemble exemplary solutions.

Our paper is dedicated to integration of case-based reasoning and evolutionary ap-
proaches in web design, which we consider necessary for practical feasibility of UI

69

optimization in this design field. Particularly, we focus on development of the case
base and the data structures that the EA relies on. In Section 2, we outline the pro-
posed EA for CBR-based web design and justify our approach to genetic representa-
tion of the solutions. In Section 3, we highlight some particulars of the implementa-
tion, specify the concrete chromosome structure, and provide some examples. In the
Conclusion, we summarize the contribution of our article and provide final remarks.

2 Methods

2.1 The Evolutionary Algorithm

The combination of the case-based reasoning approach and the genetic optimization
algorithm for WUI design (for detailed description and justification of the algorithm
see Bakaev & Gaedke, 2016) can be outlined in the following process:

1. Designer, who initiates the process, creates a new web project (case) in the CB and
specifies the problem features and other input information. We will address this in
the subsequent sub-section.

2. The CBR algorithm retrieves relevant projects from the CB: based on similarity
measures for the cases and the assessed quality of the currently operational solution
(website version). We outline the retrieval process based on problem similarity in
Section 3.

3. The EA (re-)produces new solutions (web designs), dealing with the following ma-
jor aspects of a web design:

─ Functionality: since the EA is suitable for creating relatively simple websites,
we should auto-generate not the actual programming code, but rather assemble
the available pieces of web functionality, saving their configuration in the
chromosome. We justified and detailed the use of functional components
through their meta-repository in (Bakaev, 2018c). In Section 3 of the current
paper we demonstrate their specification in the chromosome.

─ Content: by definition, web content is very changing and it does not actually re-
late to a website’s structure, although it may be perceived as related to its design
by users. So, it makes little sense to store the content-related properties in the
chromosome, they should rather correspond to the phenotype – the individual
solutions’ properties, which can vary for the same genotype. The content reposi-
tory is described in Section 3.

─ Page structure (layout): in modern websites, pages are composed from elements
that are organized hierarchically and consistently ordered within their siblings.
This is essential part of the design and its usability, and the corresponding in-
formation needs to be saved in the chromosome, which we also describe in the
subsequent sub-section.

─ Visual appearance: it is potentially the vastest part of the design space, since the
combinatorial number of all possible colors, font styles and sizes, etc. is enough
to make every website out of the existing billion unique. The elements do have

70

constraining relations between them (e.g. font’s and background’s colors must
provide enough contrast), but attempts to specify formal rules for web design
have so far been rather fruitless in practice. So, the initial values are quite im-
portant for the EA’s convergence, and the algorithm should better start from a
reasonable visual solution. We representation of the visual appearance in the
chromosome is demonstrated in Section 3.

4. The EA evaluates fitness functions for the new solutions, based on their similarity
with the reference solutions in the retrieved projects and quality assessed with the
pre-trained target users’ behavior models, and selects the best fit solutions. The
corresponding approaches were detailed in (Bakaev, 2018a) and (Bakaev, 2017b).

5. If the EA’s finishing conditions aren’t met, the algorithm applies the genetic opera-
tors and goes again to step 3 to create new generation of solutions, with the new
genotypes. We provide an example of applying the mutation genetic operator to
website’s visual appearance in Section 3.

6. The CBR algorithm retains the best solution(s) produced by the EA in the CB,
specifying it as prototype. If the web project later goes live, the CB daemons start
collecting the quality attributes for the solution (website), e.g. on the basis of the
Web Intelligence approach that we previously proposed (Bakaev, 2017a).

So, in the subsequent sub-section we consider the specificity of the problems and
solutions for CBR in the WUI design domain.

2.2 CBR: the Problem Features and the Solutions’ Chromosome Structure

Devising the accurate structure to represent the problem’s properties is seen as crucial
for machine learning and automated reasoning tasks (Anderson et al., 2013). With
respect to CBR, this feature engineering also plays important part in shaping the struc-
ture of the CB. The process generally includes: forming the excessive list of potential
features, implementing all or some of them in a prototype, and selecting relevant fea-
tures by optimizing the considered subset. In our feature engineering for WUI design
problem, we considered web project as corresponding to a case (as design- and goal-
wise complete entity) and website to a solution (as several versions of operational and
prototype websites are often created in attempts to meet the web project’s goals). We
relied upon three models selected from the ones prescribed in WUI development:
Domain, Tasks, and User (the Platform and Environment models were excluded since
they rather relate to website’s back-office). The detailed description of the feature
engineering for web projects can be found in (Bakaev, 2018a).

Unlike reusable programming code, existing website designs differ dramatically in
eminence, so the quality aspects must be stored for the solutions, to be considered in the
retrieval in addition to similarity. Website quality is best described as collection of at-
tributes, whose relative importance can vary depending of the particular project’s goals
and context (Glass, 2002). Thus, the set of quality-related features must be extendable
and provide flexibility for different formulations of the overall quality function. The
quality-related values for the cases collected from the WWW (i.e. for someone else’s
websites) can be obtained e.g. based on the Web Intelligence approach (Bakaev, 2017a).

71

As we mentioned before, the key data structure in EA is chromosome, which con-
tains code for the important properties of solutions. Most traditionally, EAs just use
linear binary representations for chromosomes, particularly in web design (Qu, 2015).
However, this implies that knowledge about the design space (the interrelations between
the genes) has to be delegated to the procedures responsible for reproduction, crossover,
etc.; otherwise the EA may end up trying combinatorial matches and lose in the conver-
gence speed. So it is sensible to separate out this knowledge in an appropriate data struc-
ture – domain ontology effectively representing the design space for WUI. Properties
(attributes) of the ontology classes thus correspond to genes, while their datatypes and
alleles, crucial for the genetic operators’ proper application, are defined via the facets’
values. WUI design support ontology that we developed in the popular Protégé-Frames
editor can be used to represent the functionality, layout and visual appearance. In Fig. 1,
we show a fragment of the ontology with some classes related to the genes responsible
for web page’s visual appearance, relying on the accepted CSS specification.

Fig. 1. Ontology classes and properties for a webpage layout and visual appearance.

3 Implementation

In this section we present some highlights of the proposed approach that we imple-
mented (see at our dedicated portal (http://wuikb.online). We used Drupal web con-
tent management framework as the platform for the implementation. Despite the usual
drawbacks associated with the use of frameworks, such as lower performance and
flexibility, the following advantages motivated our choice:

72

 Drupal has robust architecture that allows handling high number of components.
 Drupal has lots of components (modules) ready for reuse, they are well-organized

and centralized in the single repository with API access (http://drupal.org), they have
auto-maintained quality attributes (# of downloads, actual installs, open bugs, etc.).

 Drupal has programmable (via command line, API, etc.) support for installment of
websites, the layout of interface elements on webpage, handling web forms, me n-
us, content items, adjustment of visual appearance styles, and so on.

3.1 The Case-Based Retrieval

The case base is the registry of projects each of which correspond to a case and can be
either automatically scrapped from the web or specially created (Bakaev, 2018c). The
problem description are Domain, User and Task features, whose values are either
directly specified when a new project is created, mined by the supplementary tools, or
provided by human annotators. As conventional websites of the same domain have
fairly predictable functionality, there was no need to employ full-scale task modeling
notations, such as W3C's CTT or HAMSTERS (Martinie et al., 2015). So, the Task
model is represented as the structured inventory of website chapters, for which simi-
larity can be calculated fairly easily (see example in Fig. 2). The solutions (websites)
have quality attributes, which are either provided by users or experts, or obtained
automatically by the supplementary tools in the course of the CB population. So, the
CBR algorithm retrieves the cases from the CB based on the following sequence:

1. Pre-selects a set of cases based on the domain similarity
2. For each case in the set it calculates the distance measure that incorporates domain

similarity, task similarity and target user similarity (see in Bakaev, 2018a).
3. For the most similar cases it calculates the normalized quality values in the range

(0;1) and retrieves similar cases with the highest qualities.

After the retrieval of cases, the “classical” CBR prescribes adapting their solutions,
but as we noted above, in web design this process (the Reuse and Revise stages) can’t
be performed directly due to legal and technical obstacles. Instead, the EA will con-
sider similarity with the retrieved solutions as part of the new solutions’ fitness.

3.2 The Chromosome Structure Specification

Our design of the chromosome structure for the EA was based upon the following
previously justified theoretical premises and technical considerations:

1. there are three distinct dimensions of a website: functionality, layout (page struc-
ture) and visual appearance;

2. representation of design space-related knowledge should be minimized in the code
implementing the genetic operators, but moved to the chromosome instead;

3. the chromosome structure design should allow maximal use of the means provided
by the framework (without relying on its GUI), particularly Drush project of Drupal.

Based on the above, instead of the classic binary strings we have chosen to rely on the
popular “name: value” representation for each of the genes, since it also allows ex-

73

pressing classes and properties from the developed ontology. We subsequently use the
Backus-Naur form to describe the parts of the chromosome per the three website di-
mensions. In one of the following sub-sections we also provide example of using
chromosome to specify website features.

Fig. 2. Retrieved cases based on Task similarity (screenshot from http://wuikb.online)

The representation of website functionality in the chromosome is based on Drush’s
makefile syntax (http://docs.drush.org/en/8.x/make/) that in turn corresponds to
YAML. The website Domain is selected from DMOZ classification. Task names
come from the Tasks model, and Drupal modules (themes are not allowed, unlike i n
the makefile) implement the tasks on a many-to-many relationship basis. Custom
configuration for a component can be stored in the string that concatenates the project
options from the makefile (by default, most recent production versions of the modules
are used). Since the functionality install is the most time-consuming action in the
whole EA, the genetic operators are only applied to the modules if the alternatives
(alleles) have comparable quality. The resulting data structure in the chromosome can
be specified as follows:

<functionality_genes> := <domain> | <functionality_item>
| <component_configuration>
<domain> := "domain" ": " <dmoz_domain_name>
<functionality_item> ::= <task_name> ": " <dru-
pal_module_name> | <functionality_item>
<component_configuration> ::= "_" <drupal_module_name> ":
" <configuration_string> | <component_configuration>

74

Generally, each functionality item implemented for the website’s front office has one
or several related user interface elements. Correspondingly, in Drupal most front-
office modules have blocks (groups of UI elements) placed in one of webpage’s re-
gions and ordered within a region by their weight. The currently default list of regions
in Drupal (Twig template engine) has 10 items: page.header, page.primary_menu,
page.content, etc., which are sufficient for many conventional websites. The names of
the blocks are created by Drupal, so they become accessible for the EA after the web-
site functionality is assembled. The part of the chromosome describing the layout can
then be specified as follows:

<layout_genes> ::= <blocks_placement> | <blocks_order>
<blocks_placement> ::= <region_name> ": " <block_name> |
<blocks_placement>
<blocks_order_in_region> ::= <block_name> ": " <weight> |
<blocks_order_in_region>
<region_name> ::= "page.header" | "page.primary_menu" |
"page.secondary_menu" | "page.highlighted" | "page.help"
| "page.content" | "page.sidebar_first" |
"page.sidebar_second" | "page.footer" | "page.breadcrumb"

The genetic operators are applied to the blocks’ placement and order, which can be
programmatically set via Drush extras commands, such as:

drush block-configure --module=block --delta=block_delta
--region=page.header --weight=10

In Drupal, themes are responsible for visual appearance of the website, and many of
them have adjustable parameters (stored in JSON format) shaping their visual presen-
tation, such as colors, font sizes and families, etc. In the EA, after the website func-
tionality and layout genes are initialized, the algorithm selects the basic theme that
has the number of parameters appropriate for the project (more parameters mean more
flexibility, but EA’s convergence may take much longer time). The visual appear-
ance-related part of the chromosome can be specified as follows:

<visual_appearance_configuration> ::= <theme_name>
<theme_parameters>
<theme_name> ::= "theme" ": " <drupal_theme_name>
<theme_parameters> ::= | <parameter_name> ": " <parame-
ter_value> | <theme_parameters>

The genetic operators can be applied to the parameter values, and for each new solu-
tion the corresponding sub-theme is created. Although the theme parameters are
mechanism very native for Drupal, there’s no built-in universal solution for managing
the parameters. So, we implemented the dedicated Drush module to adjust themes’
parameters from command line (see https://github.com/vkhvorostov/subtheme_color).

75

3.3 Repository of Content

In the eyes of end users, content is not entirely detachable from design, so auto-
assessment of the candidate solutions’ quality in the EA’s fitness function cannot be
performed with wireframe designs, lacking any textual and graphic materials. Obvi-
ously, the assessment of the solutions’ similarity with the CBR-retrieved designs also
calls for filler-up content resembling the one of the reference websites. As we men-
tioned before, there’s barely the need to store content-related properties of solutions in
the chromosome (they should rather relate to phenotype). Thus, content items are to
be drawn from the respective repository and assigned to the solutions on a stochastic
basis. The concrete use cases for such repository are the following:

1. Extracting “original” content items from solutions in projects:
a. manually by human annotators;
b. automatically from the solutions’ webpage code and screenshot (our correspond-

ing supplementary tool, the visual analyzer, is described in Bakaev et al., 2018b).
2. Creating filler-up content items (linked to the original ones):

a. manually by human annotators;
b. automatically using online services for similar images search, text generators, etc.

3. Manual organization and management of the content items.
4. Usage of the content by the EA:

a. drawing the filler-up content items similar to the original ones in the retrieved
projects;

b. considering the degree of similarity in defining the probability for selecting a
particular filler-up content item;

c. considering the content type and placement in the webpage.

Correspondingly, the Content Item has the following attributes (see in Fig. 3):

 type (text, image, label, header, etc.);
 status (original, filler-up, outdated, etc.);
 content (piece of HTML code);
 links to Projects (mostly for filler-up content) and to their solutions (mostly for

original content);
 links to other Content Items (with weights indicating of the degree of similarity).

In Fig. 4 we show a) part of a reference website’s design, b) an extracted content item
– logo; c) related filler-up content – a similar image collected via Google, with color
similarity constraint (red); d) related filler-up content – a similar image collected via
Google, without the color similarity constraint.

3.4 Example of the EA Data Structures

In the example we show some data structures from genetic optimization of an educa-
tional website project. Extract from the part of chromosome responsible for the func-
tionality generation is presented below (its specification was previously described in

76

The Chromosome Structure sub-section). “Drupal” module name implies that func-
tionality is in Drupal core.

domain: "Career and Education"
about_us: drupal
_drupal: "version 7.59"
contact_us: webform
shopping_cart: dc_cart_ajax
…

Fig. 3. The list of Content Items in the repository (screenshot from http://wuikb.online)

The Component picker also produces the list of alleles for the shopping_cart task
(with the quality value being the number of websites using the module) outside of the
chromosome:

shopping_cart:
 dc_cart_ajax: 1874
 commerce_ajax_cart: 1375

77

 basic_cart: 1288
 uc_ajax_cart: 1278
…

Subsequently, the Website installer additionally installs Drupal’s commerce module
(as dependency for dc_cart_ajax module).

a)

b) c) d)

Fig. 4. The related items in the content repository

The layout part of the chromosome is naturally created after the functionality part,
and we present the extract below:

page.header: site-logo
page.header: site-name
site-logo: -10
site-name: 10
page.primary_menu: topbar
page.sidebar_first: content-block-1
page.content: user-login
page.footer: content-block-2
…

78

The number of genes responsible for the visual appearance is potentially unlimited
and defined by the theme parameters. An extract of the chromosome’s corresponding
part is shown below:

theme: bartik
top: '#dada4a'
bg: '#ffffff'
footer: '#161617'
text: '#3b3b3b'
link: '#0073b6'
…

Our subtheme_color module generated the following command to mutate two of the
above genes:

/drush.sh -r projects/test/ stc bartik '{"top":
"#daba4a", "footer": "#361617"}'

In Fig. 5 we illustrate the mutation, showing the visual appearance before and after
application of the genetic operator.

Fig. 5. Theme’s mutated visual appearance in generation N (left) vs. N+1 (right).

4 Conclusion

Case-based reasoning can provide a significant boost to effectiveness of computer-
aided optimization-based design of web UIs. Their integration requires certain sophis-

79

tication, since parts of available solutions cannot be reused directly, due to technical
and legal obstacles. We addressed this and other particulars of the proposed approach
and see the main contributions of the current work as follows:

1. We performed feature engineering for web projects, inspired by the popular model-
based approach to web interface development. Further, we demonstrated construc-
tion of the CB, together with repositories supplementing functionality- and con-
tent-related dimensions.

2. We devised the stages of the EA in the considered field and designed the chromo-
some structure to represent the website properties in the algorithm.

3. We justified the use of functionality-supporting components, selected the appropri-
ate framework and demonstrated its applicability in the EA.

Our further plans include training user behavior models to be employed in the EA’s
fitness function, performing the genetic optimization to produce the final solutions
and assessing their quality with representative of the target users.

Acknowledgement. The reported study was funded by Russian Ministry of Educa-

tion and Science, according to the research project No. 2.2327.2017/4.6, and by
RFBR according to the research project No. 16-37-60060 mol_a_dk.

References

1. Anderson, M.R. et al.: Brainwash: A Data System for Feature Engineering. In CIDR
(2013).

2. Bakaev, M.: Assessing similarity for case-based web user interface design. Communica-
tions in Computer and Information Science (International Conference on Digital Trans-
formation and Global Society), 858, 353-365. Springer, Cham (2018a).

3. Bakaev, M., Gaedke, M.: Application of evolutionary algorithms in interaction design: from
requirements and ontology to optimized web interface. In: IEEE Young Researchers in Elec-
trical and Electronic Engineering Conference (EIConRusNW 2016), 129-134. (2016).

4. Bakaev, M., Heil, S., Khvorostov, V., Gaedke, M.: HCI Vision for Automated Analysis
and Mining of Web User Interfaces. Lecture Notes in Computer Science (International
Conference of Web Engineering), 10845, 136-144. Springer, Cham (2018b).

5. Bakaev, M., Khvorostov, V.: Component-based engineering of web user interface designs
for evolutionary optimization. In: 19th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), 335-340. IEEE (2018c).

6. Bakaev, M., Khvorostov, V., Heil, S., Gaedke, M.: Web Intelligence Linked Open Data for
Website Design Reuse. Lecture Notes in Computer Science (International Conference of
Web Engineering), 10360, 370-377. Springer, Cham (2017b)

7. Bakaev, M., Khvorostov, V., Laricheva, T.: Assessing Subjective Quality of Web Interac-
tion with Neural Network as Context of Use Model. Communications in Computer and In-
formation Science (International Conference on Digital Transformation and Global Socie-
ty), 745, 185-195. Springer, Cham (2017b).

8. Coello, C.A.C.: Multi-objective evolutionary algorithms in real-world applications: Some
recent results and current challenges. In: Advances in evolutionary and deterministic

80

methods for design, optimization and control in engineering and sciences, 3-18. Springer,
Cham (2015).

9. De Mantaras et al.: Retrieval, reuse, revision and retention in case-based reasoning. The
Knowledge Engineering Review, 20(3), 215-240 (2005).

10. De Renzis, A., Garriga, M., Flores, A., Cechich, A., Zunino, A.: Case-based reasoning for
web service discovery and selection. Electronic Notes in Theoretical Computer Science,
321, 89-112 (2016).

11. Freitas, A.A.: Data mining and knowledge discovery with evolutionary algorithms.
Springer Science & Business Media (2013).

12. Gajos, K., Wu, A., Weld, D.S.: Cross-device consistency in automatically generated user
interfaces. In: 2nd Workshop on Multi-User and Ubiquitous User Interfaces, 7-8 (2005).

13. Glass, R.L.: Facts and fallacies of software engineering. Addison-Wesley Professional
(2002).

14. Guo, F., Liu, W.L., Cao, Y., Liu, F.T., Li, M.L.: Optimization design of a webpage based
on Kansei engineering. Human Factors and Ergonomics in Manufacturing & Service In-
dustries, 26(1), 110-126 (2016).

15. Ivory, M.Y., Hearst, M.A.: Statistical profiles of highly-rated web sites. In: ACM SIGCHI
conference on Human factors in computing systems (CHI), 367-374 (2002).

16. Kazimipour, B., Li, X., Qin, A.K.: A review of population initialization techniques for
evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC), 2585-
2592 (2014).

17. Kumar, R. et al.: Webzeitgeist: design mining the web. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems (CHI), 3083-3092 (2013).

18. Marir, F.: Case-based reasoning for an adaptive web user interface. In The International
Conference on Computing, Networking and Digital Technologies (ICCNDT2012), 306-
315. The Society of Digital Information and Wireless Communication (2012).

19. Martinie, C., Navarre, D., Palanque, P., Fayollas, C.: A generic tool-supported framework
for coupling task models and interactive applications. In: 7th ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS), 244-253 (2015).

20. Michalewicz, Z., Hartley, S.J.: Genetic algorithms+ data structures= evolution programs.
Mathematical Intelligencer, 18(3), 71 (1996).

21. Oulasvirta, A.: User interface design with combinatorial optimization. Computer, 50(1),
40-47 (2017).

22. Qu, Q. X.: Kansei knowledge extraction based on evolutionary genetic algorithm: an ap-
plication to e-commerce web appearance design. Theoretical Issues in Ergonomics Sci-
ence, 16(3), 299-313 (2015).

23. Rocha, R.G., Azevedo, R.R., Sousa, Y.C., Tavares, E.D.A., Meira, S.: A case-based rea-
soning system to support the global software development. Procedia Computer Science,
35, 194-202 (2014).

81

Causality-Based Testing in Time Petri Nets�

Elena Bozhenkova1, Irina Virbitskaite1,2 and Louchka Popova-Zeugmann3

1 A.P. Ershov Institute of Informatics Systems, SB RAS
6, Acad. Lavrentiev avenue, 630090, Novosibirsk, Russia

Novosibirsk State University
2 2, Pirogova st., Novosibirsk, 630090, Russia

3 Humboldt University of Berlin
Unter den Linden 6, 10099 Berlin, Germany

Abstract. The intention of the paper is towards a causality-based frame-
work for developing, studying, and comparing testing equivalences with
causal net and causal tree semantics in the setting of time Petri nets
(elementary net systems whose transitions are labeled with time firing
intervals, can fire only if their lower time bounds are attained, and are
forced to fire when their upper time bounds are reached). We establish
the relationships between the equivalences showing the similarity of the
semantics under consideration. This allows studying in detail the timing
behaviour in addition to the degrees of relative concurrency of processes
generated during the functioning of time Petri nets.

1 Introduction

The concept of testing equivalence was put forward by Hennessy and de Nicola
in [13]. Two processes are considered testing equivalent if there is no test that
can distinguish them. A test is usually itself a process applied to a process
by computing both together in parallel. A particular computation is consid-
ered to be successful if the test reaches a designated successful state, and the
process guarantees the test if every computation is successful. This notion is
intuitively appealing and has led to a well-developed mathematical theory of
processes that ties together the equivalences and preorders. Testing equivalences
were thoroughly investigated and well-understood in the setting of transition
systems (see [12, 8] among others) which are a representative of the interleaving
approach where concurrency relation is reduced to nondeterminism by treating
concurrent execution of actions as the choice between sequentializations of their
atomic actions. To overcome the limits of interleaving semantics, concurrency is
often modeled by absence of causal dependencies, represented by partial orders,
between systems’ events. Several well-known variants of partial order testing [2,
15] appeared in the literature. Furthermore, testing equivalences based on causal
tree semantics are actively treated as well. Here, the behaviour of a system is
represented in the form of a tree with edges labeled by actions and their predeces-
sors. So, information about causality relation between actions is kept precisely.

� This work is supported in part by DFG (project CAVER, grant BE 1267/14-1).

82

The relationships between causal tree and partial order semantics have been
thoroughly studied in [1, 11, 15].

As safety-critical applications often require verification of real time charac-
teristics, in addition to functional or qualitative temporal properties, testing
equivalences are expanded in concurrent models with time. The papers [9] and
[17] provided an alternative characterization of timed testing for discrete-time
transition models, on the base of a notion similar to that of an acceptance set
in the testing theory. In [19], decidability questions of interleaving time-sensitive
testing are investigated. Semantic theories based on testing were developed for
process algebras with timing constraints in the papers [16] and [10]. Both the
papers provide alternative characterizations of testing preorders in terms of re-
fusal traces.Also, the authors of [10] proved the possibility of discretization in
the context of their algebra and, as a consequence, reduction of dense-timed
testing to discrete-timed one. In [7], the testing relations and the results on their
alternative characterizations and the possibility of discretization were extended
to Petri nets with associating time intervals to arcs from places to transitions. At
the same time, to the best of our knowledge, there are only few mentions of a fu-
sion of timing and causality-based semantics, in testing scenario. In this regard,
the work [18] is a welcome exception, where time-sensitive testing were treated
in the setting of event structures with time characteristics. Also, our origin is the
papers [4–6] which contribute to the classification of the wealth of observational
equivalences of linear time – branching time spectrum, based on interleaving,
causal tree and partial order semantics of dense-time event structures with and
without internal actions.

The intention of the paper is towards a causality-based framework for devel-
oping, studying, and comparing testing equivalences with causal net and causal
tree semantics in the setting of time Petri nets (elementary net systems whose
transitions are labeled with time firing intervals, can fire only if their lower time
bounds are attained, and are forced to fire when their upper time bounds are
reached). We establish the relationships between the equivalences showing the
similarity of the semantics under consideration. To do this, we heavily rely on
the concept of causal net processes of a time Petri net, which were put forward
in the paper [3].

2 Time Petri Nets: Syntax and Interleaving Semantics

In this section, some terminology concerning the model of Petri nets with tim-
ing constraints (time intervals on the firings of transitions) and its interleaving
semantics in terms of firing sequences are defined.

We start with recalling the definitions of the structure and and behavior of
Petri nets (elementary net systems) [14]. We use Act to denote an alphabet of
actions.

Definition 1. – A (labeled over Act) Petri net is a tuple N = (P , T , F , M0,
L), where P is a finite set of places and T is a finite set of transitions such
that P ∩ T = ∅ and P ∪ T �= ∅, F ⊆ (P × T) ∪ (T × P) is a flow relation,
∅ �= M0 ⊆ P is an initial marking, L : T → Act is a labeling function. For

83

x ∈ P ∪ T , let •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} be the preset
and postset of x, respectively. For X ⊆ P ∪ T , define •X =

�
x∈X

•x and
X• =

�
x∈X x•.

– A marking M of a Petri net N is any subset of P . A transition t ∈ T is
enabled at a marking M if •t ⊆ M4. Let En(M) be the set of transitions
enabled at M .
The firing of a transition t enabled at a marking M leads to the new marking

M � (denoted M
t−→ M �) iff M � = (M \ •t) ∪ t•. We write M

ϑ−→ M � iff

ϑ = t1 . . . tk and M = M0 t1−→ M1 . . . Mk−1 tk−→ Mk = M � (k ≥ 0). In this
case, ϑ is a firing sequence of N from M (to M �), and M � is a reachable
marking of N from M . Let RM(N) be the set of all reachable markings of
N from M0.
We call N T -restricted iff •t �= ∅ �= t•, for all transitions t ∈ T ; contact-free
iff whenever t is a transition enabled at a marking M , then M ∩ t• = ∅, for
all M ∈ RM(N).

Following the approach of [3], we extend the above model to time Petri nets.
Let the domain T of time values be the set of rational numbers. We denote by
[τ1, τ2] the closed interval between two time values τ1, τ2 ∈ T. Infinity is allowed
at the upper bounds of intervals. Let Interv be the set of all such intervals.

Definition 2. – A (labeled over Act) time Petri net is a pair T N = (N , D),
where N is the underlying (labeled over Act) Petri net and D : T → Interv
is a static timing function associating with each transition a time interval.
For a transition t ∈ T , the boundaries of the interval D(t) ∈ Interv are
called the earliest firing time Eft and latest firing time Lft of t.

– A state of T N is a triple (M, I), where M is a marking and I : En(M) −→ T
is a dynamic timing function. The initial state of T N is a triple S0 =
(M0, I0), where M0 is the initial marking and I0(t) = 0, for all t ∈ En(M0).
A transition t enabled at a marking M is fireable from a state S = (M, I)
after a delay time θ ∈ T if (Eft(t) ≤ I(t) + θ) and (I(t�) + θ ≤ Lft(t�), for
all t� ∈ En(M))).
The firing of a transition t fireable from a state S = (M, I) after a delay time

θ leads to the new state S� = (M �, I �) (denoted S
(t,θ)−→ S�) given as follows:

(a) M
t−→ M �,

(b) ∀t� ∈ T � I �(t�) =

⎧⎨
⎩

I(t�) + θ, if t� ∈ En(M \ •t),
0, if t� ∈ En(M �) \ En(M \ •t),
undefined, otherwise.

Then, we write S
(a,θ)−→ S�, if a = L(t). We use the notation S

σ−→ S�

iff σ = (t1, θ1) . . . (tk, θk) and S = S0 (t1,θ1)−→ S1 . . . Sk−1 (tk,θk)−→ Sk = S�

(k ≥ 0). In this case, σ is a firing sequence of T N from S (to S�), and

4 For technical convenience, we do not use the classical definition: a transition t ∈ T
is enabled at a marking M if •t ⊆ M and M ∩ t• = ∅. We will require the second
part in the definition of the contact-free property.

84

S� is a reachable state of T N from S. Let FS(T N) be the set of all firing
sequences of T N from S0, and RS(T N) be the set of all reachable states of
T N from S0.
We call T N T -restricted iff the underlying Petri net is T -restricted; contact-
free iff whenever t is a transition fireable from the state S = (M, I) after some
delay time θ, then (M \ •t)∩ t• = ∅, for all S ∈ RS(T N) 5; time-progressive
iff for all sets {t1, t2, . . . , tn} ⊆ T such that t•i ∩• ti+1 �= ∅ (1 ≤ i < n) and
t•n ∩• t1 �= ∅, it holds that

∑
1≤i≤n Eft(ti) > 06. In what follows, we will

consider only T -restricted, contact-free and time-progressive time Petri nets
and denote their class as TN.

Example 1. A (labeled over Act = {a, b, c}) time Petri net T N is shown in
Figure 1. Here, the names are depicted near the elements, the flow relation is
drawn by the arcs, the initial marking is represented as the set of the places
with tokens, and the values of the labeling and timing functions are printed
next to the transitions. It is not difficult to check that t1 and t3 are transitions
enabled at the initial marking M0 and, moreover, transitions fireable from the
initial state S0 = (M0, I0) after a time delay θ ∈ [2, 3], where M0 = {p1, p2},
I0(t) =

{
0, if t ∈ {t1, t3},
undefined, otherwise.

The sequence σ = (t1, 3) (t3, 0) (t2, 2) (t3, 2)

(t1, 0) (t5, 2) (t4, 0) is a firing sequences of T N from S0. Furthermore, it is easy
to see that T N is really T -restricted, contact-free and time-progressive.

�� ��

� ������

������

�

�������

������
�� �

� �

� �� �

T N :

p1 p2

t1, b [2, 3]
t2, a

[2, 4]

t3, b [2, 4]

p3 p4

t4, c [1, 2] t5, d [2, 2]

p5 p6

Fig. 1.

3 Causality-Based Semantics of Time Petri Nets

3.1 Preliminaries

We start with considering definitions related to time causal nets.

5 Clearly, if the underlying Petri net of T N is contact-free, then T N must be contact-
free as well, but not vice versa.

6 The time-progressive property shall guarantee the correctness of the modified defi-
nition of the contact-free property, for our purposes.

85

Definition 3. A (labeled over Act) time net is a finite, acyclic net TN =
(B,E,G, l, τ) with a set B of conditions, a set E of events, a flow relation
G ⊆ (B × E) ∪ (E × B) such that {e | (e, b) ∈ G} = {e | (b, e) ∈ G} = E,
a labeling function l : E → Act, and a time function τ : E → T such that
e G+ e� ⇒ τ(e) ≤ τ(e�).

Introduce additional notions and notations for a time net TN = (B,E,G, l, τ).
Let ≺= G+, �= G∗, and τ(TN) = max{τ(e) | e ∈ E}. Specify •x = {y |
(y, x) ∈ G} and x• = {y | (x, y) ∈ G}, for x ∈ B ∪ E, and, moreover,
•X =

⋃
x∈X

•x and X• =
⋃

x∈X x•, for X ⊆ B ∪ E. Furthermore, define
the sets •TN = {b ∈ B | •b = ∅} and TN• = {b ∈ B | b• = ∅}. TN is
called a time causal net, if |•b| ≤ 1 and |b•| ≤ 1, for all b ∈ B. Notice that
η(TN) = (ETN ,�TN ∩(ETN ×ETN), lTN , τTN) is a time poset 7. Given a time
causal net over Act, TN = (B, E, G, l, τ), e, e� ∈ E, x, x� ∈ (B ∪ E), and
E� ⊆ E,

– ↓ e = {x | x � e} (predecessors), Earlier(e) = {e� ∈ E | τ(e�) < τ(e)} (time
predecessors), x � x� ⇐⇒ ¬((x ≺ x�) ∨ (x� ≺ x)) (concurrency);

– E� is a downward-closed subset of E if ↓ e� ∩ E ⊆ E�, for all e� ∈ E�. In this
case, Cut(E�) = (E�• ∪ •TN) \ •E�. Also, E� is called timely sound subset
of E if τ(e�) ≤ τ(e), for all e� ∈ E� and e ∈ E \ E�;

– a sequence ρ = e1 . . . ek (k ≥ 0) of events of TN is a linearization of TN
if every event of TN appears in the sequence exactly once, and the follow-
ing holds: (ei � ej ∨ τ(ei) ≤ τ(ej)) ⇒ i < j, for all 1 ≤ i, j ≤ k. For
a linearization ρ = e1 . . . ek of TN , define El

ρ =
⋃

1≤i≤l ei (0 ≤ l ≤ k).

Clearly, El
ρ is a downward-closed and timely sound subset of E, and, more-

over, τ(ek) = τ(TN).

Lemma 1. Every time causal net TN has a linearization ρ = e1 . . . ek. More-
over, Cut(El

ρ) =
(
Cut(El−1

ρ) \ •el
)
∪ e•l, and

(
Cut(El−1

ρ) \ •el
)
∩ e•l = ∅

(1 ≤ l ≤ k).

Time causal nets, TN = (B, E, G, l, τ) and TN � = (B�, E�, G�, l�, τ �), are
isomorphic (denoted TN � TN �) iff there exists a bijective mapping β : B∪E →
B� ∪ E� such that (i) β(B) = B� and β(E) = E�; (ii) x G y ⇐⇒ β(x) G� β(y),
for all x, y ∈ B ∪ E; (iii) l(e) = l�(β(e)) and τ(e) = τ �(β(e)), for all e ∈ E. We
say that TN is a direct prefix of TN � (denoted TN −→ TN �) if B ⊆ B�, E is
a downward-closed and timely sound subset of E�, E� \ E = {e}, ↓ e ∩ E� ⊆ E,
G = G� ∩ (B × E ∪ E ×B), l = l� |E , and τ = τ � |E .

3.2 Time Causal Net Semantics

In this subsection, the concept of causality-based net processes of time Petri nets
proposed in [3] is considered and studied.

7 A (labeled over Act) time poset (partially ordered set) is a tuple η = (X,�, λ, τ)
consisting of a finite set X of elements; a reflexive, antisymmetric and transitive
relation �; a labeling function λ : X → Act; and a timing function τ : X → T such
that e � e′ ⇒ τ(e) ≤ τ(e′). Let τ(η) = max{τ(x) | x ∈ X}.

86

Definition 4. Given a time Petri net T N = ((P , T , F , M0, L), D) and a time
causal net TN = (B,E,G, l, τ),

– a mapping ϕ : B ∪ E → P ∪ T is a homomorphism from TN to T N iff the
following conditions hold:
• ϕ(B) ⊆ P , ϕ(E) ⊆ T ;
• the restriction of ϕ to •e is a bijection between •e and •ϕ(e) and the
restriction of ϕ to e• is a bijection between e• and ϕ(e)•, for all e ∈ E;

• the restriction of ϕ to •TN is a bijection between •TN and M0;
• l(e) = L(ϕ(e)), for all e ∈ E.

– a pair π = (TN,ϕ) is a time process of a time Petri net T N iff TN is a
time causal net and ϕ is a homomorphism from TN to T N .

Given a time process π = (TN,ϕ) of T N , a subset B� ⊆ BTN , and a tran-
sition t ∈ En(ϕ(B�)), the time of enabling (TOE) of t, i.e. the latest global
time moment when tokens appear in all input places of t, is defined in [3]

as follows: TOEπ(B
�, t) = max

(
{τTN (•b) | b ∈ B�

[t] \ •TN} ∪ {0}
)
, where

B�
[t] = {b ∈ B� | ϕTN (b) ∈ •t}.
Next, define the notion of a correct time process of T N .

Definition 5. A time process π = (TN,ϕ) of T N is correct iff for all e ∈ E it
holds:

(a) τ(e) ≥ TOEπ(
•e, ϕ(e)) + Eft(ϕ(e)),

(b) ∀t ∈ En(ϕ(Ce)) � τ(e) ≤ TOEπ(Ce, t)+Lft(t), where Ce = Cut(Earlier(e)).

Let CP(T N) denote the set of correct time processes of T N .

�

�

�

�

�

�

�

�

�
�
��

�
�
��
�
�
��

�
�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
TN ′ :

b2

b1

e3, b

3

e1, a

3

b4

b3

e2, a

5 b8

b7

e7, b

7

e6, a

7

b10

b9

e5, d

9

e4, c

9

b6

b5

Fig. 2.

Example 2. The time causal net TN � = (B�, E�, G�, l�, τ �) is depicted in
Figure 2, where the net elements are accompanied by their names, and the
values of the functions l� and τ � are indicated nearby the events. Define the
time causal nets TN = (B, E, G, l, τ), with B = {b1, . . . , b4}, E = {e1, e3},
G = G� ∩ (B × E ∪ E × B)}, l = l� |E , τ = τ � |E . It is easy to see that TN is a
prefix of TN �.

Define a mapping ϕ� from the time causal net TN � (see Figure 2) to the time
Petri net T N (see Figure 1) as follows: ϕ�(bi) = pi (1 ≤ i ≤ 6), ϕ�(bi) = pi−6

(7 ≤ i ≤ 10), and ϕ�(ei) = ti (1 ≤ i ≤ 5), ϕ�(e6) = t1, ϕ
�(e7) = t3. Next, for the

87

time causal net TN , set ϕ = ϕ� |E∪B . It is easy to see that π� = (TN �, ϕ�) and
π = (TN,ϕ) are time processes of T N .

Take B̃ = {b3, b4} ⊂ B�, and t2 ∈ En(ϕ�(B̃)). Calculate TOEπ′(B̃, t2) =

max
(
{τTN ′(•b) | b ∈ B̃[t2] \ •TN �} ∪ {0}

)
= max

(
{τ �(e1) = 3, τ �(e3) = 3} ∪

{0}
)

= 3. It is not difficult to check that π� = (TN �, ϕ�), π = (TN,ϕ) ∈
CP(T N).

We now intend to realize for a time Petri net the relationships between its
firing sequences and its correct time processes. For π = (TN,ϕ) ∈ CP(T N , S),
define the function FSπ that maps any linearization ρ = e1 . . . ek of TN to the
sequence of the form: FSπ(ρ) = (ϕ(e1), τ(e1) − 0) . . . (ϕ(ek), τ(ek) − τ(ek−1)).
The following is a slight modification of Theorems 19, 21 and 22 from [3].

Proposition 1. (i) Given π = (TN,ϕ) ∈ CP(T N) and a linearization ρ of
TN , there is a unique firing sequence FSπ(ρ) ∈ FS(T N).

(ii) Given σ ∈ FS(T N) of T N , there is a unique (up to an isomorphism) time
process πσ = (TN,ϕ) ∈ CP(T N) with a unique linearization ρσ of TN such
that FSπσ

(ρσ) = σ.

From now on, for π = (TN,ϕ), π� = (TN �, ϕ�) ∈ CP(T N), we write π −→ π�

in T N iff TN −→ TN � and ϕ = ϕ�|B∪E .

Lemma 2. Given σ ∈ FS(T N) and π ∈ CP(T N) such that σ = FSπ(ρ), where
ρ is a linearization of TNπ,

(i) if σσ̃ ∈ FS(T N), then there is π̃ ∈ CP(T N) such that π → π̃ in T N and
σσ̃ = FSπ̃(ρρ̃), where ρρ̃ is a linearization of TNπ̃;

(ii) if π → π̃ in T N , then there is σσ̃ ∈ FS(T N) such that σσ̃ = FSπ̃(ρρ̃),
where ρρ̃ is a linearization of TNπ̃.

3.3 Time Causal Tree Semantics

Causal trees [11] are synchronisation trees which carry in their labels additional
information about causes of actions thus providing us with an interleaving de-
scription of concurrent processes which faithfully expresses causality. Time causal
trees are an extension of causal trees by adding timing. In the time causal tree of
T N , the nodes are simply the firing sequences from FS(T N), and an arc exists
between the two nodes if the second one is an extension of the first one. The
causes in the labels of the arc have to be computed from the causality relation
of the corresponding time processes of T N .

Definition 6. The time causal tree of T N , TCT (T N), is a tree (FS(T N),
A, φ), where FS(T N) is the set of nodes with the root �; A = {(σ, σ(t, θ)) |
σ, σ(t, θ) ∈ FS(T N)} is the set of arcs; φ is the labeling function such that
φ(�) = � and φ(σ, σ(t, θ)) = (lT N (t), θ, K), where K = {n − l + 1 | σ(t, θ) =
FSπσ(t,θ)

(e1 . . . en e), for the linearization e1 . . . en e of TNπσ(t,θ)
, and

el ≺TNπσ(t,θ)
e}. Let path(σ) be the path starting from the root and finishing

in the node σ of TCT (T N)8.
8 We assume path(�) = �. Notice that in TCT (T N), for any node σ ∈ FS(T N), there
is a path starting from the root and finishing in σ.

88

Example 3. Consider the time Petri net T N (see Figure 1) and its firing sequence
σ = (t1, 3) (t3, 0) (t2, 2) (t3, 2) (t1, 0) (t5, 2) (t4, 0) ∈ FS(T N). It is easy to
get that φ(path(σ)) = (a, 3, ∅) (b, 0, ∅) (a, 2, {1, 2}) (b, 2, {1, 2, 3}) (a, 0, {2, 3, 4})
(d, 2, {2, 3, 4, 5}) (c, 0, {2, 4, 5, 6}).

We finally establish some relationships between correct time processes and
labeled paths in the time causal trees of time Petri nets.

Proposition 2. (i) Given π ∈ CP(T N) and π′ ∈ CP(T N ′) with an isomor-
phism f : η(TNπ) → η(TNπ′), φ(path(FSπ(ρ))) = φ′(path(FSπ′(f(ρ)))),
for any linearization ρ of TNπ.

(ii) Given σ ∈ FS(T N) and σ′ ∈ FS(T N ′) such that φ(path(σ)) = φ′(path(σ′)),
there is an isomorphism f : η(TNπσ

) → η(TNπσ′) such that f(ρσ) = ρσ′ .

4 Testing Equivalences in Causality-Based Semantics

A kind of causal testing on event structure models has already been defined by
Aceto, De Nicola and Fantechi in [2]. Their idea is that the experiments on event
structures are pomsets instead of words and the behaviour which is tested for
after the experiment consists of a set of actions. Instead of sets of actions, the
authors of [15] have used sets of direct extensions of the executed pomsets, as
tests. Also, in [15] a stronger version of causal testing has been put forward,
based on posets rather than pomsets. Following this approach, we define poset
testing equivalence on time Petri nets, relying on their correct time processes. Let
Pos(T N) = {TP is a time poset| ∃π = (TN,ϕ) ∈ CP(T N), TP � η(TN)9}.
Definition 7. Given time Petri nets T N and T N ′,

– for a time poset TP and a set TP of time posets, such that TP≺· TP ′10

for all TP ′ ∈ TP, T N after TP MUSTpos TP iff for all π = (TN,ϕ) ∈
CP(T N) and for all isomorphisms f : η(TN) −→ TP , there exists TP ′ ∈
TP, π′ = (TN ′, ϕ′) ∈ CP(T N), and an isomorphism f ′ : η(TN ′) −→ TP ′

such that π → π′ and f ⊆ f ′;
– T N and T N ′ are poset testing equivalent (denoted T N ∼pos TN ′) iff for

all time posets TP and for all sets TP of time posets, such that TP≺· TP ′

for all TP ′ ∈ TP, it holds: T N after TP MUSTpos TP′ ⇐⇒ T N ′ after
TP MUSTpos TP′.

Example 4. Consider the time Petri nets T N 1, T N 2, and T N 3 depicted in
Figure 3. It is easy to see that T N 1 and T N 2 are ∼pos–equivalent whereas T N 2

and T N 3 are not. Let’s make sure the latter. Define posets TP = ({x1, x2}, �,
λ, τ) and TP ′ = ({x1, x2, x3}, �′, λ′, τ ′), where �= {(xi, xi) | 1 ≤ i ≤ 2},
λ(xi) = b, τ(x1) = τ ′(x2) = 0; �′= {(xi, xi) | 1 ≤ i ≤ 3} ∪ {(x2, x3)}, λ′(x1) =

9 Time posets, η = (X,�, λ, τ) and η′ = (X ′,�′, λ′, τ ′), are isomorphic (denoted
η � η′) iff there is a bijective mapping β : X → X ′ such that (i) x � y ⇐⇒
β(x) �′ β(y), for all x, y ∈ X; (ii) λ(x) = λ′(β(x)) and τ(x) = τ ′(β(x)), for all
x ∈ X.

10 A time poset η is a direct prefix of a time poset η′ (denoted η≺· η′) iff X ⊆ X ′,
X ′ \X = {x}, �=�′ ∩(X ×X), λ = λ′ |X , τ = τ ′ |X , and x is a maximal w.r.t. �′

element of X ′.

89

λ�(x2) = b, λ�(x3) = a, τ �(x1) = τ �(x2) = 0, and τ �(x3) = 3.9. For any time
process π2 = (TN2, ϕ2) ∈ CP(T N 2) with ETN2

consisting of two concurrent
events with labels b and time values 0, and any isomorphism f2 : η(TN2) −→ TP ,
we can find π�

2 = (TN �
2, ϕ

�
2) ∈ CP(T N 2) with ETN ′

2
consisting of two concurrent

events with labels b and time values 0 and some third event with label a and
time value 3.9, which is causally preceded by one of the b’s, and an isomorphism
f �
2 : η(TN

�
2) −→ TP � such that π2 → π�

2 and f2 ⊂ f �
2. But this is not the case in

T N 3.

T N 1 :

�� �� ��

�
�
��� �

� �� �� �

�
�

���
�
��� �

� �� �

b
[0, 0] b [0, 0]

a
[0, 4] a [0, 4]

T N 2 :

�� �� ��
�

���
�
�
�
�
�
�
�
��

�
��� �

� �� �� �

�
�

���
�
���

�

� �

� � �� � �

b
[0, 0] b [0, 0]

a [0, 4] a [0, 4] a [4, 4]

T N 3 :

�� �� ��
�

���
�
�
�
�
�
�
�
��

�
��� �

� �� �� �

�
�

���
�
���

�

� �

� � �� � �

b
[0, 0] b [0, 0]

a [0, 4] a [4, 4] a [0, 4]

Fig. 3.

Second, the definition of testing equivalence on time causal trees is developed.
For this we adapt the concept of causal tree testing on event structures from [15]
to time Petri nets, in so doing the experiments and tests are constructed over
the alphabet Act × T × 2N instead of over Act × 2N. We shall need the set
L(TCT) = {φ(u) ∈ (Act × T × 2N)∗ | u is a path in the time causal tree TCT
starting from its root}.
Definition 8. Given time Petri nets T N and T N � with their time causal trees
TCT (T N) and TCT (T N �), respectively,

– for a sequence w ∈ (Act×T×2N)∗ and a set W ⊆ (Act×T×2N), TCT (T N)
after w MUST W iff for all paths u in TCT (T N) from its root to a node n
such that φ(u) = w, there exists a label (a, d,K) ∈ W and an arc r starting
from n such that φ(r) = (a, d,K);

– TCT (T N) and TCT (T N �) are causal tree testing equivalent (denoted TCT (T N)
∼ct TCT (T N)) iff for all w ∈ (Act × T × 2N)∗ and W ⊆ (Act × T × 2N),
TCT (T N) after w MUST W ⇐⇒ TCT (T N �) after w MUST W.

Lemma 3. Given time Petri nets T N 1 and T N 2,

(i) Pos(T N 1) = Pos(T N 2) ⇐⇒ L(TCT (T N 1)) = L(TCT (T N 2));
(ii) T N 1 ∼pos T N 2 =⇒ Pos(T N 1) = Pos(T N 2),

TCT (T N 1) ∼ct TCT (T N 2) =⇒ L(TCT (T N 1)) = L(TCT (T N 2)).

90

We finally establish the coincidence of poset and causal tree testing equiva-
lences, in the setting of time Petri nets. The proof of the result can be found in
Appendix.

Theorem 1. Given time Petri nets T N and T N ′,

T N 1 ∼pos T N 2 ⇐⇒ TCT (T N 1) ∼ct TCT (T N 2).

5 Concluding Remarks

We have shown that some of the causality-based testing equivalences actively
treated in the untimed and timed event structures literature may be lifted to
the realm of time Petri nets. In particular, we have defined testing equivalences
based on time causal trees and time causal nets, in the setting of safe Petri nets
(elementary net systems) with strong timing (transitions are labeled with time
firing intervals, enabled transitions are able to fire only if their lower time bounds
are attained, and are forced to fire when their upper time bounds are reached). In
doing so, we dealt with three behavioral representations of a time Petri net: firing
sequences representing interleaving semantics, time causal net processes, from
causal nets of which partial orders are derived, and the causal tree semantics
constructed from the firing sequences and partial orders. We have realized for
a time Petri net the relationships between its firing sequences and correct time
processes, on the one hand, and the labeled paths in its time causal tree and
correct time processes, on the other hand. As a main result, the coincidence
between the testing equivalences in the semantics of time partial orders and
time causal trees has been established. It is worth noticing that the result also
works for the untimed versions of the equivalences in the setting of untimed
contact-free elementary net systems.

As for future work, we plan to see the place of the equivalences and semantics
under consideration in the lattice of those in the linear-time - branching-time
and interleaving - partial order spectra, constructed in the paper [20]. Also, we
intend to extend the results obtained to time Petri nets with invisible actions.

References

1. Aceto L.: History preserving, causal and mixed-ordering equivalence over stable
event structures Fundamenta Informaticae 17(4) (1992) 319–331.

2. Aceto L., De Nicola R., Fantechi A.: Testing equivalences for event structures.
Lecture Notes in Computer Science 280 (1987) 1–20.

3. Aura T., Lilius J.: A causal semantics for time Petri nets. Theoretical Computer
Scinece 243 (2000) 409–447.

4. Andreeva M., Bozhenkova E., Virbitskaite I.: Analysis of timed concurrent
models based on testing equivalenc. Fundamenta Informaticae 43 (2000) 1–20.

5. Andreeva M., Virbitskaite I.: Timed equivalences for timed event structures.
Lecture Notes in Computer Science 3606 (2005) 16–25.

6. Andreeva M., Virbitskaite I.: Observational Equivalences for Timed Stable
Event Structures. Fundamenta Informaticae 72(1-3) (2006) 1–19.

91

7. Bihler E., Vogler W.: Timed Petri Nets: Efficiency of Asynchronous Systems.
Lecture Notes in Computer Science 3185 (2004) 25–58.

8. Cleaveland R., Hennessy M.: Testing equivalence as a bisimulation equivalence.
Lecture Notes in Computer Science 407 (1989) 11–23.

9. Cleaveland R., Zwarico A.E.: A theory of testing for real-time. Proc. 6th IEEE
Symp. on Logic in Comput. Sci. (LICS’91), Amsterdam, The Netherlands (1991)
110–119.

10. Corradini F., Vogler W., Jenner L.: Comparing the Worst-Case Efficiency of
Asynchronous Systems with PAFAS. Tech. Rep. N 2000-6, Inst. fur Informatik of
Univ. of Augsburg.

11. Darondeau Ph., Degano P.: Refinement of actions in event structures and causal
trees. Theoretical Computer Science 118 (1993) 21–48.

12. De Nicola R.: Extensional equivalences for transition systems. Acta Informatica
24 (1987) 211-237.

13. De Nicola R., Hennessy M.: Testing equivalence for processes. Theoretical Com-
puter Science 34 (1984) 83–133.

14. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. Lecture Notes in
Computer Science 1491 (1998) 12–121.

15. Goltz U., Wehrheim H.: Causal testing. Lecture Notes in Computer Science
1113 (1996) 394–406.

16. Hennessy M., Regan T.: A process algebra for timed systems. Information and
Computation 117 (1995) 221–239.

17. Llana L., de Frutos D.: Denotational semantics for timed testing. Lecture Notes
in Computer Science 1233 (1997) 368–382.

18. Murphy D.: Time and duration in noninterleaving concurrency. Fundamenta In-
formaticae 19 (1993) 403–416.

19. Steffen B., Weise C.: Deciding testing equivalence for real-time processes with
dense time. Lecture Notes in Computer Science 711 (1993) 703–713.

20. Virbitskaite I., Bushin D., Best E.: True concurrent equivalences in time Petri
nets. Fundamenta Informaticae 149(4) (2016) 401–418.

Appendix

Proof of Theorem 1. Let TCT (T N i) = (FS(T N i), Ai, φi) (i = 1, 2).
(⇒) Assume T N 1 ∼pos T N 2. Then, Pos(T N 1) = Pos(T N 2), by Lemma 3(ii).

Thanks to Lemma 3(i), L(TCT (T N 1)) = L(TCT (T N 2)). We shall show that
TCT (T N 1) ∼ct TCT (T N 2). Take arbitrary w ∈ (Act × T × 2N)∗ and W ⊆
(Act × T × 2N). W.l.o.g. let | w | = n (n ≥ 0). Suppose TCT (T N 1) after w
MUST W, i.e. for all paths u in TCT (T N 1) from its root to a node σ, such
that φ1(u) = w, there exists a label (a, θ,K) ∈ W and an arc r starting from σ
such that φ1(r) = (a, θ,K). Check that TCT (T N 2) after w MUST W.

If w �∈ L(TCT (T N 1)) = L(TCT (T N 2)), then the result is obvious. Consider
the case with w ∈ L(TCT (T N 1)) = L(TCT (T N 2)). Due to the fact, we can
take an arbitrary path u from the root to some node σ ∈ FS(T N 1), such that
φ1(u) = w. By Proposition 1(ii), there is a unique (up to an isomorphism) time
process πσ = (TNσ, ϕσ) ∈ CP(T N 1) with a unique linearization ρσ = eσ1 . . . e

σ
n

of TNσ such that FSπσ (ρσ) = σ. Let TPw = η(TNσ). Clearly, TPw ∈ Pos(T N).
For each (a, θ,K) ∈ W, construct the time poset TP(a,θ,K) = (X,�,λ, τ)

as follows: X = ETNσ
∪ {e(a,θ,K)} (e(a,θ,K) �∈ ETNσ

); �=�TNσ
∪{(eσn−k+1,

92

e(a,θ,K)) | k ∈ K}; λ |ETNσ
= λTNσ

, λ(e(a,θ,K)) = a; τ |ETNσ
= τTNσ

, τ(e(a,θ,K)) =
τ(TNσ) + θ. Let TPW = {TP(a,θ,K) | (a, θ,K) ∈ W}. By the construction, it
holds that TPw≺· TP(a,θ,K), for all TP(a,θ,K) ∈ TPW.

Check that T N 1 after TPw MUSTpos TPW, i.e. for all π1 = (TN1, ϕ1) ∈
CP(T N 1) and for all isomorphisms f1 : η(TN1) −→ TPw, there exists TP � ∈
TPW, π�

1 = (TN �
1, ϕ

�
1) ∈ CP(T N 1) and an isomorphism f �

1 : η(TN �
1) −→ TP �

such that π1 → π�
1 and f1 ⊆ f �

1. Take arbitrary π1 = (TN1, ϕ1) ∈ CP(T N 1) and
isomorphism f1 : η(TN1) −→ TPw. Clearly, (f1)

−1 : η(TNσ) → η(TN1) is an
isomorphism. Due to Proposition 2(ii), e11 . . . e

1
n = ρ1 = (f1)

−1(ρσ) is a lineariza-
tion of TN1 such that w = φ(path(σ1 = FSπ1(ρ1))). As TCT (T N 1) after w
MUST W, there exists a label (a�1, θ

�
1,K

�
1) ∈ W and an arc r1 starting from the

node σ1 such that φ1(r1) = (a�1, θ
�
1,K

�
1). Then, we can find TP �

1 = TP(a′
1,θ

′
1,K

′
1)

∈
TPW and, hence, {e(a′

1,θ
′
1,K

′
1)
} = ETP ′

1
\ ETNσ

, a�1 = λTP ′
1
(e(a′

1,θ
′
1,K

′
1)
), θ�1 =

τTP ′
1
(e(a′

1,θ
′
1,K

′
1)
)− τ(TNσ), K

�
1 = {n− l+1 | eσl �TP ′

1
e(a′

1,θ
′
1,K

′
1)
}, thanks to the

construction of TPW. Moreover, there is σ�
1 = σ1(t

�
1, θ

�
1) ∈ FS(T N 1), for some

t�1 ∈ TT N 1 , such that r1 = (σ1, σ
�
1) and φ1(σ

�
1, σ

�
1) = (lT N 1(t

�
1) = a�1, θ

�
1,K

�
1),

due to the definition of TCT (T N 1). By virtue of Lemma 2(i), there is π�
1 =

(TN �
1, ϕ

�
1) ∈ CP(T N 1) such that π1 −→ π�

1 and σ�
1 = FSπ′

1
(ρ�1), for some lin-

earization ρ�1 = ρ1ρ̃ of TN �
1. W.l.o.g. suppose ρ̃ = e�1. Then, ϕ

�
1(e

�
1) = t�1. Specify

a mapping f �
1 : η(TN �

1) → TP �
1 as follows: f �

1 |Eη(TN1)
= f1, f

�
1(e

�
1) = e(a′

1,θ
′
1,K

′
1)
.

Moreover, we have: λη(TN ′
1)
(e�1) = a�1 = λTP ′

1
(e(a′

1,θ
′
1,K

′
1)
); τη(TN ′

1)
(e�1) = θ�1 +

τ(TN1) = θ�1+τ(TNσ) = τTP ′
1
(e(a′

1,θ
′
1,K

′
1)
); e1n−k+1 �η(TN ′

1)
e�1 ⇐⇒ f �

1(e
1
n−k+1) =

eσn−k+1 �TP ′
1
e(a′

1,θ
′
1,K

′
1)
, for all k ∈ K �

1. So, f
�
1 is an isomorphism and f1 ⊆ f �

1.
Thus, T N 1 after TPw MUSTpos TPW. Hence, T N 2 after TPw MUSTpos

TPW, by the theorem assumption.

We further show that TCT (T N 2) after w MUST W, i.e. for all paths u2

in TCT (T N 2) from its root to a node σ2 such that φ2(u2) = w, there exists
(a, θ,K) ∈ W and an arc r2 starting from σ2 such that φ2(r2) = (a, θ,K).
Take an arbitrary path u2 in TCT (T N 2) from its root to a node σ2 such
that φ2(u2) = w. Since w ∈ L(TCT (T N 2)), at least one such u2 exists in
TCT (T N 2). By Proposition 1(ii), there is a unique (up to an isomorphism) time
process πσ2

= (TN2, ϕ2) ∈ CP(T N 2) with a unique linearization ρ2 = e21 . . . e
2
n

of TN2 such that FSπσ2
(ρ2) = σ2. By virtue of Proposition 2(i), there ex-

ists an isomorphism f2 : η(TN2) −→ TPw such that f2(ρ2) = ρσ. Since T N 2

after TPw MUSTpos TPW, there exists TP �
2 ∈ TPW, π�

σ2
= (TN �

2, ϕ
�
2) ∈

CP(T N 2) and an isomorphism f �
2 : η(TN �

2) −→ TP �
2, such that πσ2

−→ π�
2 and

f2 ⊆ f �
2. Due to Lemma 2(ii), there exists σ2σ̃2 ∈ FS(T N 2) such that σ2σ̃2 =

FSπ′
2
(ρ2ρ̃2), for some linearization ρ2ρ̃2 of TN �

2. By the construction of TPW,
there is (a, θ,K) ∈ W such that TP �

2 = TP(a,θ,K), and, hence, {e(a,θ,K)} =
ETP ′

2
\ ETNσ

. As TN2 −→ TN �
2 and TPw≺· TP �

2, we can w.l.o.g. suppose that
{e�2} = ETN ′

2
\ ETN2

. This implies that ρ̃2 = e�2 and f �
2(e

�
2) = e(a,θ,K). Further-

more, due to f �
2 being an isomorphim, we have: λη(TN ′

2)
(e�2) = λTP ′

2
(e(a,θ,K)) = a,

τη(TN ′
2)
(e�2) = τTP ′

2
(e(a,θ,K)) = τ(TNσ) + θ = τ(TN2) + θ, and eσi �TP ′

2
e(a,θ,K)

⇐⇒ (f �
2)

−1(eσi) = e2i �η(TN ′
2)

e�2, for all 1 ≤ i ≤ n. So, σ̃2 = (ϕ�
2(e

�
2), θ)

and e2n−k+1 �η(TN ′
2)

e�2, for all k ∈ K. Hence, in TCT (T N 2) there is an arc

93

r2 = (σ2, σ2σ̃2) such that φ2(r2) = (a, θ,K). Therefore, we get that TCT (T N 1)
after w MUST W ⇒ TCT (T N 2) after w MUST W.

By symmetry, we have that T N 1 ∼pos T N 2 ⇒ TCT (T N 1) ∼ct TCT (T N 2).

(⇐) Assume TCT (T N 1) ∼ct TCT (T N 2). By Lemma 3(ii), L(TCT (T N 1)) =
L(TCT (T N 2)). Moreover, Pos(T N 1) = Pos(T N 2), thanks to Lemma 3(i). We
shall show that T N 1 ∼pos T N 2. Take an arbitrary time poset TP and arbitrary
set TP of time posets such that TP≺· TP �, for all TP � ∈ TP. Suppose that T N 1

after TP MUSTpos TP, i.e. for all π = (TN,ϕ) ∈ CP(T N 1) and for all isomor-
phisms f : η(TN) −→ TP , there exists TP � ∈ TP, π� = (TN �, ϕ�) ∈ CP(T N 1)
and an isomorphism f � : η(TN �) −→ TP � such that π → π� and f ⊆ f �. Check
that T N 2 after TP MUSTpos TP.

In the case when TP �∈ Pos(T N 1) = Pos(T N 2), the result is obvious.
Suppose TP ∈ Pos(T N 1) = Pos(T N 2). Then, we can take an arbitrary π =
(TN,ϕ) ∈ CP(T N 1) and arbitrary isomorphism f : η(TN) −→ TP . Consider
an arbitrary linearization ρ of TN , which exists, due to Lemma 1. By Proposition
1(i), there is a unique firing sequence σ = FSπ(ρ) ∈ FS(T N 1). By Proposition
1(ii), we can w.l.o.g. assume that π = πσ = (TNσ, ϕσ) and ρ = ρσ = eσ1 . . . e

σ
n

(n ≥ 0). Denote φ(path(σ)) as wTP . So, wTP ∈ L(TCT (T N 1)).

For each TP � ∈ TP, construct a triple (aTP ′ , θTP ′ ,KTP ′) ∈ (Act × T × 2N)
as follows. Let {eTP ′} = XTP ′ \ XTP . Then, we have: aTP ′ = λTP ′(eTP ′),
θTP ′ = τTP ′(eTP ′)− τ(TNσ), KTP ′ = {n− l + 1 | f(eσl) �TP ′ eTP ′ , 1 ≤ l ≤ n}.
Determine the set WTP = {(aTP ′ , θTP ′ ,KTP ′) | TP � ∈ TP}.

Check that TCT (T N 1) after wTP MUST WTP, i.e. for all paths u1 in
TCT (T N 1) from its root to a node σ1 such that φ1(u1) = wTP , there exists
(a, θ,K) ∈ WTP and an arc r1 starting from σ1 such that φ1(r1) = (a, θ,K).
Take an arbitrary path u1 in TCT (T N 1) from its root to a node σ1 such that
φ1(u1) = wTP . Since wTP ∈ L(TCT (T N 1)), at least one such u1 exists in
TCT (T N 1). By Proposition 1(ii), there is a unique (up to an isomorphism) time
process πσ1

= (TN1, ϕ1) ∈ CP(T N 1) with a unique linearization ρσ1
= e11 . . . e

1
n

of TN1 such that FSπσ1
(ρσ1

) = σ1. By virtue of Proposition 2(i), there exists
an isomorphism fσ1σ : η(TN1) −→ η(TNσ), such that fσ1σ(ρσ1

) = ρσ. More-
over, we get f1 = f ◦ fσ1σ : η(TN1) −→ TP . Since T N 1 after TP MUSTpos

TP, there exists TP �
1 ∈ TP, π�

1 = (TN �
1, ϕ

�
1) ∈ CP(T N 1) and an isomorphism

f �
1 : η(TN �

1) −→ TP �
1, such that πσ1

−→ π�
1 and f1 ⊆ f �

1. Due to Lemma 2(ii),
there exists σ1σ̃1 ∈ FS(T N 1) such that σ1σ̃1 = FSπ′

1
(ρσ1

ρ̃1), for some lin-
earization ρσ1

ρ̃1 of TN �
1. Also, there is (aTP ′

1
, θTP ′

1
,KTP ′

1
) ∈ WTP, by the con-

struction of WTP, and, hence, {eTP ′
1
} = XTP ′

1
\ XTP . As TN1 −→ TN �

1 and
TP≺· TP �

1, we can w.l.o.g. suppose that {e�1} = ETN ′
1
\ ETN1

, i.e. ρ̃1 = e�1,
and f �

1(e
�
1) = eTP ′

1
. Furthermore, due to f �

1 being an isomorphism, we have:
λη(TN ′

1)
(e�1) = λTP ′

1
(eTP ′

1
) = aTP ′

1
, τη(TN ′

1)
(e�1) = τTP ′

1
(eTP ′

1
) = τ(TNσ) + θTP ′

1

= τ(TN1) + θTP ′
1
, and f(eσi) �TP ′

1
eTP ′

1
⇐⇒ (f �

1)
−1(f(eσi)) = e1i �η(TN ′

1)
e�1,

for all 1 ≤ i ≤ n. So, e1n−k+1 �η(TN ′
1)

e�1, for all k ∈ KTP ′
1
, and σ̃1 =

(ϕ�
1(e

�
1), θTP ′

1
). Hence, in TCT (T N 1) there is an arc r1 = (σ1, σ1σ̃1) such that

φ1(r1) = (aTP ′
1
, θTP ′

1
,KTP ′

1
). Therefore, we get that TCT (T N 1) after wTP

94

MUST WTP. By the theorem assumption, we have that TCT (T N 2) after
wTP MUST WTP.

We further show that T N 2 after TP MUSTpos TP, i.e. for all π2 =
(TN2, ϕ2) ∈ CP(T N 2) and for all isomorphisms f2 : η(TN2) −→ TP , there
exists TP �

2 ∈ TP, π�
2 = (TN �

2, ϕ
�
2) ∈ CP(T N 2) and an isomorphism f �

2 :
η(TN �

2) −→ TP �
2 such that π2 → π�

2 and f2 ⊆ f �
2. Take an arbitrary π2 =

(TN2, ϕ2) ∈ CP(T N 2) and arbitrary isomorphism f2 : η(TN2) −→ TP . Define
the isomorphism f̄2 = f−1

2 ◦ f : η(TNσ) −→ η(TN2). Due to Proposition 2(ii),
wTP = φ2(path(σ2 = FSπ2(ρ2))), for the linearization f̄2(ρσ) = ρ2 = e21 . . . e

2
n

of TN2. As TCT (T N 2) after wTP MUST WTP, there exists (a�2, θ
�
2,K

�
2) ∈

WTP and an arc r2 starting from σ2 such that φ2(r2) = (a�2, θ
�
2,K

�
2). Then,

we can find TP �
2 ∈ TP such that (aTP ′

2
, θTP ′

2
,KTP ′

2
) = (a�2, θ

�
2,K

�
2), thanks

to the construction of WTP. Moreover, there is σ�
2 = σ2(t

�
2, θ

�
2) ∈ FS(T N 2),

for some t�2 ∈ TT N 2 , such that φ2(σ2, σ2(t
�
2, θ

�
2)) = (lT N 2(t

�
2) = a�2, θ

�
2,K

�
2),

due to the definition of TCT (T N 2). By virtue of Lemma 2(i), there is π�
2 =

(TN �
2, ϕ

�
2) ∈ CP(T N 2) such that π2 −→ π�

2 and σ�
2 = FSπ′

2
(ρ�2), for some

linearization ρ�2 = ρ2ρ̃ of π�
2. W.l.o.g. suppose {e�2} = ETN ′

2
\ ETN2

. Then,
ϕ�
2(e

�
2) = t�2. Specify a mapping f �

2 : η(TN �
2) → TP �

2 as follows: f �
2 |Eη(TN2)

= f2,
f �
2(e

�
2) = e(a′

2,θ
′
2,K

′
2)
. Moreover, we have: λη(TN ′

2)
(e�2) = a�2 = λTP ′

2
(e(a′

2,θ
′
2,K

′
2)
);

τη(TN ′
2)
(e�2) = θ�2+τ(TN2) = θ�2+τ(TNσ) = τTP ′

2
(e(a′

2,θ
′
2,K

′
2)
); e2n−k+1 �η(TN ′

2)
e�2

⇐⇒ f �
2(f̄2(e

σ
n−k+1)) �TP ′

2
f �
2(e

�
2) ⇐⇒ f(eσn−k+1) �TP ′

2
e(a′

2,θ
′
2,K

′
2)
, for all

k ∈ K �
2. So, f

�
2 is an isomorphism and f2 ⊆ f �

2. Thus, T N 2 after TP MUSTpos

TP.
By symmetry, we have that TCT (T N 1) ∼ct TCT (T N 2) ⇒ T N 1 ∼pos T N 2.

��

95

Software simulation of the information web-system with
regulation of access to Internet content*

Konstantin Budnikov and Alexander Kurochkin

Institute of Automation and Electrometry of Siberian Branch of the Russian Academy
of Sciences, Academician Koptyug ave. 1, 630090 Novosibirsk, Russia

budnikov@iae.nsk.su, kurochkin@iae.nsk.su

Abstract. Filtering of requests to an Internet resource by its URL is the most
popular way to restrict access to information hosted on the network, which is
necessary to comply with the requirements of security, copyright, labor regime,
etc. This method can be considered as the most balanced in terms of the ad-
vantages and disadvantages. It allows to use a selective approach to information
resources located on one and the same IP-address and to prohibit access when
necessary.

We have developed specialized software and have carried out simulation
computer modeling of the information web-system, in which a filtering device
is built in. Filter processes request flows to the server by a group of users con-
nected to it and counter information from the server. In order to eliminate the
influence of the network infrastructure on the operation of the model, the net-
work interfaces were emulated by software, and all network data flows pro-
ceeded in the memory of the simulating computer. In the process of modeling,
we compared 2 filtering methods: the standard method of preliminary analysis
of requests and the proposed post-analysis method.

Computer simulation showed a decrease of the average waiting time for a re-
sponse from the web-server when a user request to a web-resource passed
through the emulated filtering device, which worked in the post-analysis mode,
up to 14% compared to the device that worked in standard mode. Filter
throughput increased by up to 54%.

Keywords: software simulation, web-system, HTTP filters.

1 Introduction

The growth of the Internet in conjunction with the advent of a large number of infor-
mation Internet resources, access to which needs to be restricted for a number of rea-
sons, including age and moral and ethical criteria, requirements for compliance with
security, copyright, labor regime, etc., requires improvement of methods and tools of
ensuring a selective ban on access to information on the network. Currently, these
methods include: restricting access by IP address, by URL, changing requests to DNS

* Work is supported by IAE SB RAS, project #АААА-А17-11706061006-6

96

2

servers, using proxy servers, packet filtering. These approaches combine both ad-
vantages and disadvantages.

Filtering of requests to a resource by its URL is the most popular method, which
can be recognized as the most balanced in terms of its strengths and weaknesses. It
allows for a selective analysis of requests to information resources located on one IP-
address and to prohibit access to a resource when necessary. For a separate Internet
access device (computer, smartphone, tablet), a specially installed program performs
the filtering process [2; 3], and for a group of devices - a filtering device with Internet
access to which they are connected [4-7]. In the framework of this work, we consider
a model of an information web-system in which the filtering device processes infor-
mation flows from a group of connected subscribers.

The standard filtering algorithm by the URL, which is described, for example, in
patents Cisco Technology, Inc. [5] and Ironport Systems, Inc. [6], presupposes a pre-
liminary check of the request at the input of the device, and only by its results the
request either passes further or is blocked. The verification itself takes the time asso-
ciated with intercepting the request, extracting the URL from it and searching for it in
the lists of forbidden addresses. At this time, the request is delayed by the filter.

Working on the improvement of this algorithm, we came to an algorithm that was
called a filtering algorithm with post-analysis of requests [7, 8]. We expected that it
would provide a reduction of the waiting time for a response from the web-server and
an increase of the throughput of the filtering device and as a result of the system as a
whole. To confirm this assumption, we carried out a computer simulation, which will
be discussed later.

2 Algorithms of filtration

The standard filtering algorithm mentioned above assumes the following sequence of
actions.

Fig. 1. Time diagrams for filtering of requests to the web-server using the standard algorithm
(A) and the algorithm for post-analysis of requests (B).

97

3

A device that filters by an URL intercepts a user's request passing through it, extracts
from it the address of the resource being accessed. Further, depending on the built-in
algorithm, this address is searched in the lists of resources that are prohibited or al-
lowed. If the URL that is being accessed is allowed, the request is passed to the Inter-
net, reaches the server with the required resource, and the server returns a response
with the requested information. If access to a resource of user interest is denied, the
request is blocked by the filter. The timing diagram of events that occur during filter-
ing by this algorithm is shown in Fig.1 (A).

The improvement of this algorithm using post-analysis of requests gives a gain in
the time of a user request passing through a filtering device compared to the standard
packet processing sequence. It consists of the time spent on determining the TCP
session for each packet, forming a user request from the packets, extracting the identi-
fier of the requested resource URL and checking the request for access to the request-
ed resource using internal lists of forbidden URLs. The timing diagram of events that
occur during filtering by this algorithm is shown on Fig.1 (B). Both algorithms are
discussed in detail in [8].

3 Model of the system

A simulated web-system (Fig. 2) consists of a web-server, its clients, sending requests
to web-resources located on it and a filtering device that regulates clients' access to
resources. The task of its modeling is focused on the problem of the fastest passing
requests through the filter. Model of the filter consists of two equivalent channels that
provide packet traffic through the device and its filtering. Each channel contains the
following modules (Fig. 2): network packet reading (MPR), packet sorting (MPS) and
packet transfer (MPT). The central module of the model is a packet analyzer (MAP)
common to both channels. Interaction with communication lines occurs through the
modules of network interfaces MNI1 and MNI2. The operation of the filtering device
in the simulated system is described in more detail in [9].

Fig. 2. Simulated web-system.

Since the main focus of the research is on the problem of the fastest passing re-
quests through the filter, the simulation process compared 2 filtering algorithms men-
tioned above. In order to get the result of the comparison, which would not depend on
the communication lines that connect the components of the system, but contained
only a comparison of the processing times of requests to the web-server and its re-

98

4

sponses, it was decided to simulate the system, putting requests, responses and filter-
ing device itself into a computer memory.

4 Simulation of the system

The simulation process takes place using preliminary prepared files containing net-
work packets recorded in advance. They are exchanged between the web-client and
the web-server during an HTTP session. In the above model, we replaced the network
interface modules (MNI) with network simulation modules (MNS). Other modules
remained unchanged. Both MNS have the same architecture and operation algorithm,
and the role of each module as a web-client or server is set when the simulator of the
system is configured. In the process of simulation, the MNS uses the above-
mentioned file containing network packets that the web-client exchanged with the
server during the HTTP session. Each packet in such a file has a number of attributes,
the main one being the identifier of the sender of the packet. Both MNS perform the
main work on simulation. Each of them consists of four main components (Fig. 3):

Fig. 3. The structure of the network simulation module and its interaction with MPR and MPT.

1. Simulation thread, which provides capability of the module to simulate the opera-
tions of receiving and transmitting packets.

2. Session descriptor table. This table contains all the information about the process
of emulation of HTTP sessions during the test. Each descriptor contains an image
of a file with session packets, a pointer to the current packet being processed, a
repetition counter for this session, and a number of other auxiliary parameters. The
size of the table, the number of repetitions and the file with packages are set in the
parameters of the test.

3. Buffer of packet transfer accumulates packets devoted for transmission. Discipline
of packet service is consistent with the principle of FIFO. Packages come from

99

5

MPT and are added to the end of the list. The internal simulation thread reads
packets from the list, starting with the first one.

4. A list of descriptors of sessions which are ready for reading. This list contains de-
scriptor numbers in which the current packet corresponds to the incoming packet
for the current session state. Numbers are added by the simulation thread to the end
of the list. When requesting a packet, the MPR selects a descriptor number ran-
domly and reads the corresponding current packet.

The algorithm of the simulation thread work is shown in Fig.4.When a simulation
experiment runs, both MNS are loaded into memory and initiated. As a part of this
process, they get their roles: the client or server, their descriptor tables are being
formed. Packages from the specified session file are recorded into each descriptor and
modified so that, first, the session is unique with respect to other descriptors, and
second, the task of determining the package to the descriptor is most simplified. The
current packet pointer is set to the first packet. The repeat counter is reset. The packet
transmission buffer is created empty. At startup, the simulation stream is set to the
waiting state of the packet for transmission.

Fig. 4. Work flow chart for algorithm of the simulation thread.

100

6

The list of descriptors of session which are ready for each MNS is formed differ-
ently. In the MNS, which emulates the exchange with a web-server, the list is created
empty, and when the MNS of web-client is loaded, the numbers of all descriptors are
entered in this list. Therefore, after the launch of the corresponding read thread in the
MPR, the processing of HTTP session packets begins. They are fed to the MPR input.
The main cycle of the simulation process starts.

The simulation thread is activated when the MPT module adds a packet to the
buffer of packet transfer. The packet is read from the buffer and determined to belong
to one of the session descriptors. The simulation thread goes to the next packet in the
session (increments the current packet pointer in the descriptor). The sender ID of this
packet is analyzed. If the packet needs to be sent to the MPR, then the descriptor
number is added to the list of ready-to-read descriptors. Next, the thread checks for
data in the packet transfer buffer. If unprocessed packets are present, they are pro-
cessed in the same way. If the buffer is empty, then the simulation thread pauses. In
case of reaching the end of the session after the increment of the current packet point-
er, this pointer is redirected to the first packet in the session and the repetition counter
in the descriptor increases. If the repetition counter reaches the value specified in the
test parameters, this session descriptor is disabled and no longer participates in the
simulation process. The experiment is considered complete when all descriptors are
disabled.

Reading of packets from the session descriptor table follows a similar algorithm.
The packet reading thread loads the number of one of the descriptors that is ready for
reading and copies the packet into the specified memory area. It then moves to the
next packet in the session and analyzes the sender ID of this packet. If the packet also
needs to be sent to the MPR, the number of the corresponding descriptor is returned to
the list of ready-to-read descriptors. Packet that is read goes to the MPR, and the read-
ing thread continues processing of descriptors. When the end of the session is
reached, the current packet pointer is set to the first packet and the session repeat
counter increases. The corresponding descriptor is no longer serviced when the repeat
counter equals the value specified in the experiment parameters.

5 Simulation results

Using the above presented web-system simulator, we compared the filtering algo-
rithms mentioned earlier. This is a standard filtering algorithm by URL and the im-
proved algorithm based on post-analysis of requests to a web-resource. In the process
of testing, the work of the system was simulated with different intensities of request
streams from clients and sizes of responses from the web-server ranging from
1Kbytes to 100Kbytes. The emulation was done using an office computer with an
Intel Core i7 870 4 × 2.93Ghz processor and 4Gb of memory. The following system
characteristics were investigated, such as: the number of processed HTTP sessions per
1 second, the intensity of virtual network streams, and the client's waiting time for a
response from the web-server. In the process of testing, the virtual exchange rate
reached 7.7Gbit/s (8770 requests per second) with the size of server responses of

101

7

100Kbytes. The number of requests per second reached 135600 (1.9Gbit/s) with the
size of server responses of 1Kbytes.

Figure 5 shows graphs of the response time from the web-server (μs) as a function
of the intensity of virtual network flows in the emulated system (Mbit/s) for standard
filtering of requests (A) and filtering with post-analysis (B) for the size of the re-
sponse from web-server of 1Kbyte.

Fig. 5. Dependencies of response time from the web-server (μs) on the intensity of virtual net-
work streams in the emulated system (Mbit/s). Size of the response from web-server equals to

1Kbyte.

Simulation showed a decrease in the average waiting time for a response from the
web-server when a user request to a web-resource passed through an emulated filter-
ing device, which worked in the post-analysis mode, compared to the device that
worked in the preliminary query analysis mode. At the end of the initial segment of
the graph (its linear part) for the standard (A) algorithm, it reached 14% for server
responses of 1Kbyte and 11% for server responses of 100Kbytes. Filter throughput
increased by up to 54% with 1K server responses and up to 22% with 100K server
responses. The obtained values refer to a specific modeling computer and the model
of the system that is implemented on it. In other cases, results can be obtained that
differ from the shown above.

6 Conclusion and future work

Computer simulation allows you to find solutions for problems that cannot always be
solved, or their solution is difficult using other modeling methods. In our case, this is
a computer simulation of the information web-system, which has a built-in filtering
device. The simulation was performed using specially created software that emulates

102

8

a filtering device, network interfaces, communication lines, clients, and a web-server.
This allowed to exclude the network component of the system by placing a filtering
device in the center of the model. Functionally, the filter model was not changed
when the algorithm was changed. Thus, it was possible to compare filtering algo-
rithms by conducting experiments on the same computer with the same set of pro-
cessed data. In the process of modeling, we compared the standard filtering algorithm
and the improved algorithm using the post-analysis of requests. The advantage of the
improved algorithm and its perspective of use in filtering devices was confirmed. The
relatively small gain in waiting time for a response from a web server can be inter-
preted as the need for hardware support for an improved filtering algorithm. Further
development of the filter is seen in the perspective of using an improved algorithm in
conjunction with its hardware support.

References

1. Apetyan,S Kovalev, A., Veybach, A.: Filtering content in Internet. Analysis of internation-
al practice. Foundation of Civil Society Development, 22 May, 2013.
http://civilfund.ru/Filtraciya_Kontenta_V_Internete_Analiz_Mirovoy_Praktiki.pdf [in
Russian]

2. Osipov, G.S., Tihomirov, I.A., Sochenkov, I.V.: Method and system for web content filtra-
tion. Patent RU 2446460 C1. IPC G06F 21/20 (2006.01), published 27.03.2012. Official
Bulletin of Rospatent "Inventions. Useful Models”, 2012, #9 [in Russian].

3. Bellinson, C., Evans, C., Fravert, H., Taylor, W.: “Content filtering for web browsing”. Pa-
tent US20040006621 A1, IPC G06F17/30, G06F13/00, G06F15/00, G05B1/00,
G06F17/00, published 08.01.2004.

4. Kumar, B., Sekhar, Ch., Kodukula, N.: PRE-EMPTIVE URL FILTERING TECHNIQUE.
Patent N0.: US 8,838,741 B1 Int. Cl. G06F 15/16, Date of Patent: Sep. 16, 2014

5. Balasubrahmaniyan, J., Daftary, K., Yarlagadda, V. R., Kumar, K.: SYSTEM AND
METHOD FOR URL FILTERING IN A FIREWALL. Patent US 20060064469A1, Int.
Cl.G06F 15/16 (2006.01), Pub. Date: Mar. 23, (2006).

6. Bloch, E., Mohan, S., Pagaku, R.R., et al.: Apparatus for monitoring network traffic. Pa-
tent US 7849502 B1, Int Cl G06F 15/16 (2006.01), G06F 11/00 (2006.01), Pub. Date: Dec.
7, (2010).

7. Budnikov, K.I., Kuruchkin A.V.: Method of HTTP-packet flow filtration based on post-
analysis of requests to Internet resource and filtering device for its realization. Patent RU 2
599 949 C1 IPC G06F15/00, G06F15/16, G06F 21/00, G06F 21/50. Official Bulletin of
Rospatent "Inventions. Useful Models”,,# 29, Published Oct. 10, (2016). [in Russian].

8. Budnikov, K.I., Kuruchkin, A.V., Lubkov, A.A., Yakovlev, A.V.: Regulation of access to
web-resource based on post-analysis of http-requests. In: Kazanskiy, N.L. , Kudryashov,
D.V. et al (eds.) Proceedings of the International conference Information Technology and
Nanotechnology (ITNT 2016), Samara, Russia, May 17-19, 2016. CEUR Workshop Pro-
ceedings vol. 1638. Published on CEUR-WS: 02-Aug-2016. http://ceur-ws.org/Vol-1638/.

9. Budnikov, K.I., Kuruchkin, A.V., Lubkov, A.A., Yakovlev, A.V.: Experimental Study of
Symmetric Computer Model of Http-Filter. In: Proc. of the 2018 3rd Russian-Pacific Con-
ference on Computer Technology and Applications (RPC), 18-25 Aug. 2018, Vladivostok,
Russia. doi: 10.1109/RPC.2018.8482147 https://ieeexplore.ieee.org/document/8482147.

103

Inter-country competition and collaboration in
the miRNA science field �

Artemiy Firsov1,3[0000−0002−7681−1032] and Igor Titov2,3

1 Institute of Informatics Systems, 6, Acad. Lavrentjev pr., Novosibirsk 630090,
Russia https://www.iis.nsk.su

2 Institute of Cytology and Genetics, Prospekt Lavrentyeva 10, Novosibirsk 630090,
Russia http://www.bionet.nsc.ru

3 Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
https://nsu.ru/

Abstract. Many digital libraries, such as PubMed, Scopus, appeared
with the growth of the Internet: thus, many scientific articles became
available in the digital form. We got an opportunity to query articles
metadata, gather statistics, build co-authorship graphs, etc. This in-
cludes estimating the authors/institutions activity, revealing their in-
teractions and other properties.
In this work we present the analysis of the characteristics of institutions
interactions in the miRNA science field using the data from PubMed
digital library. To tackle the problem of the institution name writing
variability, we proposed the k-mer/n-gram boolean feature vector sorting
algorithm -KOFER. We identified the leaders of the field - China, USA -,
characterized the interactions and described the country level features of
co-authorship. We observed that the USA were leading in the publication
activity until China took the lead 4 years ago. However, the USA are the
main co-authorship driver in this field.

Keywords: k-mer · n-gram · dbscan · identification · mirna · timsort ·
kofer · digital library · co-authorship.

1 Introduction

Many digital libraries appeared with the growth of the Internet, thus, the format
of representation of many scientific articles changed. We got an opportunity to
query articles metadata, gather some statistics, etc. This includes understanding
the authors/institutions activity, their interactions, and other characteristics.
One can also prove that the Paretto rule for the institutions publication activity
holds true [2], or that the idea spreads from one author to another like the virus
spreads from one person to the others. Having this information, we can further
use it to predict the new science field creation, popularity of the particular science
field. In general, it can be used in social informatics.

� The work of I.T. was supported by the Federal Agency of Scientific Organizations
(project 0324-2019-0040).

104

2 Artemiy Firsov and Igor Titov

Moreover, right now the new science field is emerging science of science [12].
It is a transdisciplinary field of science that aims to understand the evolution of
ideas, choice of a research problem of particular scientist, etc. Without analyzing
interactions between authors, institutions, and other, such a field just cannot
exist.

However, to do that one should know to which real author/institution the
authors name/affiliation from the paper corresponds to. The more precise cor-
respondence we have, the better accuracy of statistics we can get. This disam-
biguation issue is not that simple considering big datasets, such as PubMed
with 2 ∗ 107 articles. It becomes more complicated when you consider errors
in the author name/affiliation made either by author, or by editor. Moreover,
sometimes author/institution name might be changed, or the affiliation from
the papers metadata may have mixed institution names for different authors.
E.g. if the Author1 has Institute of Cytology and Genetics, Novosibirsk, Russia
institution and the Author2 has Institute of Mathematics, Novosibirsk, Russia
institution, their resulting affiliation for collaborative paper might be Institute
of Cytology and Genetics, Institute of Mathematics, Novosibirsk, Russia. More-
over, affiliation can contain email, postal address and other insertions not related
to institution name.

1.1 Author Disambiguation Overview

To disambiguate the authors, many sophisticated algorithms were proposed.
Some base on the similarity function [13], others use clustering techniques [14],
web information [15], etc. Different approaches are reviewed well in Ferreiras et
al. paper [16].

Although they utilize different algorithms and methods, almost all of them
have one thing in common they use affiliation as the author feature. That means
that similarity between two different records of authors from different articles
is measured using affiliation also. Moreover, there is no uniform algorithm to
process affiliation entry, in different papers researchers use different similarity
measures. However, one may think of another use of affiliation.

1.2 Affiliation Disambiguation Problem

We know that the researchers can work in different places, thus, can have multiple
affiliations in their papers. We also know that they leave/get fired from/change
their institution rarely. By that means, one may identify the author having the
knowledge of his affiliations, or at least propose a hypothesis. On the other
hand, affiliation is represented by its authors/workers. That means that having
a set of author names, one can deduce, in which institution these authors work,
or at least propose a hypothesis. I.e. people are the feature of institution and
institutions are the feature of a person. Using this statement, we can think of the
author disambiguation issue and the affiliation disambiguation issue as of two
separate issues. Moreover, results of one issue solution can be used to enhance
the results of the other.

105

Inter-country competition and collaboration in the miRNA science field 3

Having this in mind, we in Molecular Genetics Department of Institute of
Cytology and Genetics propose an idea that iterative, self-consistent solution of
the author disambiguation issue, the affiliation disambiguation, and the paper
topic extraction issue can increase the accuracy of all these issues.

In this paper, we aim to provide the solution for Affiliation Disambigua-
tion problem. In addition, the whole self-consistent project is currently under
development in the laboratory of molecular genetic systems in the Institute of
Cytology and Genetics under I.I. Titov supervision.

The organization name disambiguation problem has already been addressed
in several works, in which authors aimed to disambiguate organization names
mined in the social web-data. Authors used web data [3], and sophisticated al-
gorithms [4]. However, we are aiming to find the simple and yet precise solution,
basing on the simple input data - just affiliations. That way we can get compu-
tationally effective algorithm, which can be specified using results of the author
name disambiguation problem solution.

2 Methods and materials

2.1 Prerequisites

The basic idea of the work is to get the groups of organizations mentions, which
contain only mentions of one institution. After that we may use that informa-
tion to build the co-authorship graph of organizations/countries, get static and
dynamic characteristics of the science field, etc. So on the first step we solved
the clustering problem of institutions names writings:

maxf(C) subject to C = (C1, ...Ck), C1 ∪ ... ∪ Ck = S (1)

,where S - the set of affiliations extracted from the publications, Ci - group of
similar affiliations. So we want to assign a label to each of the affiliations in the
dataset, so that the final grouping by labels maximizes some function f . This f
can be constructed in many ways, however in our case, the closer the grouping
is to the ground-truth grouping (i.e. one group contains all and only affiliations
that refer to the same institution), the higher the value of the function. So the
previous problem statement will transform:

maxf(C,R) subject to R = (R1, ...Rk), C = (C1, ...Ck) (2)

C1 ∪ ... ∪ Ck = S,R1 ∪ ... ∪Rk = S

, where R is the ground-truth grouping of the affiliation set S, labeled by the
author, m the ground-truth number of labels. The function f that provides such
characteristics is discussed in the Evaluation Metrics section of this chapter.

2.2 Dataset

To conduct experiments, we have gathered two datasets from PubMed [1] dig-
ital library using MEDLINE file format. First one is the Novosibirsk dataset,

106

4 Artemiy Firsov and Igor Titov

that consists of the preprocessed affiliations of the Novosibirsk institutions. This
dataset was gathered in the Titovs and Blinovs work [2] dedicated to the au-
thor disambiguation problem. We labeled this dataset to have the ground-truth
affiliation clustering to further use it for clustering algorithm hyperparameters
fine-tuning. Second one is the miRNA dataset gathered on the following search
query on the PubMed website over Title and Abstract fields:

(((((((miRNA) OR mi-RNA) OR microRNA) OR micro-RNA) OR miRNAs)
OR mi-RNAs) OR microRNAs) OR micro-RNAs.

The miRNA dataset contains the publications available on the PubMed dig-
ital library as of 11/11/2018.

Table 1: Characteristics of the datasets used in the work
Novosibirsk dataset miRNA dataset

of articles ∼ 6,000 77,800
Year ... - 2014 ... - 2018
of affiliations 951 387,793
of unique organizations 62 ∼ 20,000

2.3 Evaluation metrics

We used homogeneity (h), completeness (c) and v-measure score (v) [5] to eval-
uate the clustering results for Novosibirsk dataset.

h = 1− H(C|K)

H(C)
(3)

c = 1− H(K|C)

H(K)
(4)

v = 2 ∗ h ∗ c
h+ c

, (5)

where H(C|K) = −∑|C|
n=1

∑|K|
n=1

nc,k

n
∗ log(nc,k

nk
), H(C) = −∑|C|

c=1

nc

n
∗ log(nc

n
);

H(K|C), H(K) are constructed the same way.
These metrics are analogous to precision, recall and f-metric used in super-

vised learning. Homogeneity equals one if every cluster contains only all data
points from one class. Completeness equals one if all data points from one class
are assigned to the same cluster for every cluster. In addition, v-measure is de-
rived from homogeneity and completeness. The closer these metrics are to one,
the better the solution is.

Although we aimed to increase this parameters, it is pretty hard to have
them be near 1 if you work with affiliation entry only. So, we introduced addi-
tional metric to choose from different clustering results. As we aim to create an

107

Inter-country competition and collaboration in the miRNA science field 5

instrument that reveals some statistics of institutions activity basing on their
names only, it is reasonable to try to cluster affiliations in the way that final
cluster count is equal to ground-truth class count. Thus, we chose those hyper-
parameters that gave clusters count close to real class count. All the clustering
quality metrics were calculated using the most significant clusters (cluster vol-
ume ≥ 10), as we want to be aware only on those institutions that are actively
publishing in a certain field.

2.4 Data preprocessing

Pre-processing stage of all algorithms is performed before actual calculations. As
discussed in introduction, affiliations have some additional information, which
relate to the author, not institution. This leads to the big number of variations of
institution name writing. On that stage, we remove emails/zip/phone/numbers
from affiliation using regular expressions. We also perform standard operations,
like preserving only alphabetical characters, expanding the abbreviations, re-
moving stopwords, etc.

During the research we tried several NLP frameworks hoping they can fix
errors described in some points above. These include NLTK [7], language check
[8] and others. We found out that affiliations (or institutions references) cannot
be fully considered as manifestations of natural language, and NLP frameworks
perform poorly on them, giving a lot of errors on each affiliation. However, they
still can be used to fix errors inside words such as institue and others.

So far we eliminated explicit artifacts, however, there may be implicit ar-
tifacts, like name of the laboratory where the author works. We call this an
implicit artifact as this name can be different for different institutions and it is
hard to provide deterministic algorithm that will work for every situation.

To handle such artifacts, we introduced regular expression based algorithm
based on keywords and country names. We provide our algorithm with key-
words, such as center, institute, etc. We also provided our algorithm with full
list of country names. Now, having all that information, we can represent our
affiliation as a sequence of numbers. We split affiliation by commas and assign
each part 0 number. If any keyword is in a particular part, we assign it number
1. If any country is in a particular part, we assign it number 3. Thus, Institute
of Cytology and Genetics, Novosibirsk, Russia is represented as 103; Institute of
Cytology and Genetics, Institute of Mathematics, Novosibirsk, Russia is repre-
sented as 1103. Number of ones represents the number of institution names in
the affiliation, which can further be handled with a simple regular expression
(0?1+0?0*0?3?0?).

The advantage of such approach is that new notions can be introduced into
this algorithm, e.g. cities. Moreover, it is extensible and modifiable, as providing
new keywords and country/city names, we can wider our algorithm configuration
to work with bigger domain of affiliations.

108

6 Artemiy Firsov and Igor Titov

Fig. 1: Example of normalized and split affiliation

2.5 Clustering and similarity

After the pre-processing stage, the clustering stage is performed. We tried dif-
ferent techniques for the clustering K-Means and DBSCAN [10] and different
popular similarity functions Levenshtein, Jaccard, Smith-Waterman. We used
scikit-learn [9] implementation of those.

We also tried using K-Mers feature vectors to find similarity between affilia-
tions. K-Mer is a notion that came from genetics. It is a substring of a certain
string of length K. Geneticists use it to analyze DNA/RNA sequences. In Nat-
ural Language Processing there is a similar notion n-gram. Building K-Mer
feature vector is described below and in section K-Mers Boolean Feature Vector
Sorting (KOFER) based Clustering. However, it is important to notice that we
used letter K-Mers, not word K-Mers in the work.

Similarity functions were used to create the distance matrix, and also K-Mers
were used to create features of a certain affiliation. As K-Mer is a substring of
a string of length K, one can assign the Boolean vector to the affiliation. In this
vector each bit represents the presence of a certain K-Mer in the affiliation. As
K-Mer dictionary power exponentially grows with the K number, this dictionary
upon K-Mers consists only of K-Mers present in the certain dataset that is being
processed in the experiment.

Basically, similarity function for strings is a function that takes as an input
two terms and outputs the value between 0 and 1:

f(x, y) = z (6)

, where z ∈ [0, 1], x, y ∈ V ∗, V - alphabet. However, for Boolean vectors - x, y ∈
Bm, m - the size of the K-Mer dictionary.

During experiments we found out that KMeans and DBSCAN perform poorly
on affiliations data, so we proposed another method based on the K-Mer boolean
feature vectors clustering.

The idea of the method is based on the consistency of affiliation writing. E.g.
if an author works in ”Institute of Cytology and Genetics”, it is highly likely
that this particular words with some additional information will be present as
affiliation in his work. Moreover, we can assume that these words should usually
be placed in the ”first position” of affiliation, like in ”Novosibirsk Institute of
Cytology and Genetics, Novosibirsk, Russia”.

109

Inter-country competition and collaboration in the miRNA science field 7

The naive idea would be to sort affiliations strings, find distance between
current and next neighbors, and then set a threshold for the distance. If the
distance exceeds the threshold, we can consider this pair to belong to different
clusters, e.g. table 2.

Table 2: 10 affiliation entries sorted by name. Left column - affiliation. Right
column - demonstrative distance. 5th line has high distance as affiliation refer
to different organizations. The last row is automatically assigned to the latest
cluster as there is no next row to calculate similarity with.

institute of cytology and genetics 0.1
institute of cytologyand genetics 0.2
institute of cytology and gnetics 0.3
instiute of cytologyand genetics 0.2
institute of cytology and genetics 0.8
institue of bioorganic chemistry 0.1
institue of biorganic chemistry 0.2
institue of bioorganicchemistry 0.1
institue of bioorganic chemistry 0
institue of bioorganic chemistry

Such an approach benefits in performance time. DBSCAN complexity is
O(n2) in the worst case (running ahead, we note that we observed such situ-
ation running experiments), as well as sorting (however we did not observe that
problem during experiments). Distance calculation time grows linearly with in-
creasing number of records, as well as comparison time. Thus, performance com-
plexity would be O(nlog(n)) ideally. However, the nave approach performs badly
in the following situations:

1. There exists preceding part in affiliation name Institute of Cytology and
Genetics vs Novosibirsk Institute of Cytology and Genetics.

2. There is an error in the beginning of the affiliation Lnstitute of Cytology
and Genetics.

In both cases, entries are assigned into different clusters, as they start with
different characters.

2.6 K-Mer Boolean vector sorting

To tackle the problems pointed above, we decided to perform sorting on K-
Mers vector instead of plain text. Here and further, we mean letter K-Mer when
mention K-Mer, not word K-Mer. K-Mer vector can be constructed in different
ways, but firstly, one should calculate K-Mer dictionary:

1. Take the dataset with affiliations
2. Calculate K-Mers for each string

110

8 Artemiy Firsov and Igor Titov

3. Take only unique K-Mers and reorder them from frequent to rare

We need reordering to provide each K-Mer with its place and to provide position
invariance.

Having this done, we then proceed to feature vector calculation, which can
be done using one of the following approaches:

1. Create the binary vector, that represents the presence of all K-Mers in the
affiliation

2. Create natural vector, that represents the number of occurrences of all K-
Mers in the affiliation

Further, we discuss the first approach and provide the results of clustering using
binary K-Mer features. Then, we can lexicographically sort these vectors so
that affiliations with similar contents will be aligned together in the array of all
affiliations. And moreover, this procedure can restore the conformity between
affiliation substrings, as we can see from the 4.

E.g., assume that the dataset contains only two words ”institute” and ”in-
stitue”. We use the simple example here for the ease of understanding. Then the
K-Mer dictionary and K-Mer Boolean feature vectors would look like this:

Table 3: K-Mers dictionary and K-Mers boolean feature vectors for the simple
case

Dictionary K-Mer
Occurrences

in
2

ns
2

st
2

ti
2

it
2

tu
2

ut
1

tu
1

ue
1

For the word ”institute” 1 1 1 1 1 1 1 1 0
For the word ”institue” 1 1 1 1 1 1 0 0 1

Having this done, we can further lexicographically sort the K-Mer Boolean
feature vectors and find the distance between two neighboring vectors using
Boolean distance metrics, as we did in the Results chapter, for the use in clus-
tering by the threshold. For example, below is the table showing words sorted
by their K-Mer Boolean feature vectors representation. Here, we use five words
to show how we reach the threshold of the distance in the sorted list of vectors
- ”institute”, ”institute”, ”institute”, ”center”, ”centre”. We also eliminate the
explanation of the K-Mers dictionary construction, as it was explained before.
The distance was calculated using Dice distance [11].

We can see that similar words grouped and the distance reaches its peak
when there is a change from the word ”institue” to the word ”center”. If we
than say that the distance threshold should be bigger than 0.43 to consider
previous and further records to belong to different clusters, we than can validly
assign different words to different clusters.

111

Inter-country competition and collaboration in the miRNA science field 9

Table 4: Affiliations sorted lexicographically by the K-Mer booleam feature vec-
tors with distances between neighboring records calculated with Dice distance
Word K-Mer Boolean feature vector Distance between current and next

institute 1111111100000000 0.2
insitute 1111100100001000 0.43
institue 1111011000010000 0.83
center 0000100011100100 0.4
centre 0000000011100011 0.2

2.7 Country Identification

To identify countries in affiliations we used the open data [17] with the list of
countries and cities provided. If the country or city was present in the affiliation,
than the affiliation was assigned the corresponding country

3 Results

In this paper, we present the results for country level co-authorship in the miRNA
field. Using the K-Mer Boolean vector sorting algorithm we were able to cluster
the miRNA affiliations data. From the 387,793 affiliations we got 23,655 clusters.
i.e. institutions.

3.1 PubMed statistics

To have the properties to compare with, we got the statistics from the PubMed
website in Fig.2. All the plots were generated using the matplotlib software [19].
The growth of the articles available in the PubMed is different from the ones foe
the miRNA science field - for all the publications in the miRNA field the linear
model does not fit. The beginning of the growth is different from the remainder
part.

The logistic function estimation on the remainder part gives

a

1 + b ∗ exp−c∗x =
19603.09

1 + 31.09 ∗ exp−0.42∗x (7)

parameter values. And the exponential estimation at the beginning

expa∗x+b = exp3.62∗x+0.74 (8)

This shows that likely the miRNA field is in the saturation state. All the
graphs are built using the 2003 - 2016 data, because the 2017, 2018 years are
the years when the field reaches it’s plateau.

112

10 Artemiy Firsov and Igor Titov

(a) Number of publications added to the PubMed digital library per year

(b) Number of publications per year (c) Log number of publications per year

Fig. 2: Publications in the miRNA science field

3.2 Countries publication activity

It would be interesting now to see per country publication activity (Fig.3). We
may see that the USA had the rapid start of publication in this field, reaching 100
publications in 2004. However, the growth started to reduce over time, whereas
China had higher growth, which led to China becoming the new leader in 2013.
The numeric growth estimations for separate countries are available in Fig.4 and
Tab.5.

Fig. 3: Comparison of the countries publication activity

The logistic parameters estimations for publication activity of different coun-
tries is presented in the table below:

113

Inter-country competition and collaboration in the miRNA science field 11

Fig. 4: Countries publication activity with numeric estimations.

Table 5: Parameter of the logistic function estimation for publication activity of
different countries

Country a b c

Australia 397,04 44,51 0.49
Canada 396,36 36,44 0.42
China 5,610.52 156,97 0.65
France 270,78 56,34 0.42

Germany 668,37 15,56 0,41
India 300,92 93,69 0.61
Italy 669,29 16,41 0,42
Japan 400,22 25,3.1 0.54
Korea 277,04 150,24 0,68

Netherlands 237,04 10,57 0.38
Spain 268,22 47,5 0.47

Switzerland 193,1 14.26 0.38
UK 961,07 29.11 0.36
USA 2798,78 10,04 0.37

114

12 Artemiy Firsov and Igor Titov

3.3 Countries interaction graph

To see how countries interact, we have built the graph using the gephi software
[18]. We used only those countries that have published more than 500 articles
to reduce the noisiness of the graph in Fig. 5.

The graph shows that the USA and China are the leaders in this field, as
well as they publish together a lot. Although connections are quite dense, and
there are many joint publications between different country pairs, the number
of joint publications seems to be quite low, and it is not clear whether some
country is the driver of joint publications, or it is the common practice in the
field to publish together. This problem will be addressed in the 3.4

Fig. 5: Co-authorship of countries in the miRNA field. The label text, as well as
the size of the point reflects the number of published articles, edges thickness
shows the number of articles published together. If there were more than 2
countries in the publication, each pair of countries is considered to have had the
joint publication.

3.4 Joint publications

During the 2002-2016 period, there were 52,407 publications, 5,412 of which
were international, i.e. joint. The field until some time did not have much joint
publications, however things changed in 2013. That year USA and China started
actively publish together (Fig. 6).

However, the main driver for joint publications is the USA, as it has more
publications with different countries than China (Tab.6). Also, it is interesting

115

Inter-country competition and collaboration in the miRNA science field 13

Fig. 6: The log portion of international publications relative to overall number
of publications

to notice that major part of all USA joint publications appeared after the 2013,
when it started actively publishing with China.

Table 6: Most active countries pairs sorted by the number of joint publications
Country 1 Country 2 Publications

USA China 1,084
USA UK 324
USA Italy 227
USA Germany 223
USA Canada 190
UK Germany 182
USA Korea 165
USA Japan 145
USA Australia 131
China Canada 110
UK Italy 103

China UK 101
USA France 100

4 Discussion

Getting the implicit properties of science field has major research interest as it
reveals the current state of the field, provides the opportunity to compare dif-
ferent science fields with uniform instrument and gives the possibility to predict
the creation of new fields or the future of the particular one.

And although metrics are the subject of the disputes - whether they are
needed or not, useful or harmful - they are still of peoples interest. Whether

116

14 Artemiy Firsov and Igor Titov

government or companies support the research, they also rely on information en-
vironment surrounding the science field, which is often quantified to, e.g. number
of publications within a science field, the impact of the research on the market,
etc. Having more possibilities to reveal the ”true” state of the science field would
help researchers to show the importance of their field, as well as the funding or-
ganizations to distribute their funds efficiently. Thus, this work aims to reveal
the quantitative metrics of the science field.

In our worked we used K-Mer Boolean feature vector sorting algorithm, which
performed fast, however it still has the drawback of splitting the cluster into 2
separate cluster if there appears the different affiliation with common k-mer/n-
gram inside the cluster. This problem can be tackled using the numeric feature
vector, which will consider not only the presence of the k-mer/n-gram, but also
the count of them present in the affiliation.

This work yet does not cover the affiliation level properties of the miRNA
science field. It would be interesting to see the leaders of the field, track their
history and also get the properties of the co-authorship graph.

The points mentioned above will be considered in the upcoming paper.

5 Conclusion

In this work we have implemented the algorithm for fast institution name clus-
tering based on the K-Mer Boolean feature vector sorting - KOFER. Using that
algorithm we managed to cluster the miRNA science field affiliations data.

Using the clustering results, we were able to get properties of country level
interactions, see that China is currently the leading country in this field, however
the USA is the biggest driver of joint publications.

The linear growth model does not fit the publication activity of countries
- the relaxation should be taken into account. That tells us that the field is
currently reaching it’s peak.

References

1. Ncbi.nlm.nih.gov. (2019). Home - PubMed - NCBI. [online] Available at:
https://www.ncbi.nlm.nih.gov/pubmed/ [Accessed 17 Jan. 2019].

2. Titov, I., Blinov, A.: Research of the structure and evolution of scientific co-
authorship based on the analysis of Novosibirsk institutes publications in the bi-
ology and medicine science field. Vavilov Journal of Genetics and Selection, 2014
vol. 18 4/2

3. Shu Zhang, Jianwei Wu, Dequan Zheng, Yao Meng, Hao Yu: An Adaptive Method
for Organization Name Disambiguation with Feature Reinforcing. 26th Pacific Asia
Conference on Language, Information and Computation, 2012, p.237-245

4. Nafiye Polat: Experiments on company name disambiguation with supervised clas-
sification techniques. 2013 International Conference on Electronics, Computer and
Computation (ICECCO), 2013. doi:10.1109/ICECCO.2013.6718248

5. Bell Hirschberg, J. and Rosenberg, A. (2007). V-Measure: A conditional entropy-
based external cluster evaluation. In: EMNLP. Prague.

117

Inter-country competition and collaboration in the miRNA science field 15

6. Rajaraman A, Ulman J (2011) Data Mining. In: I.stanford.edu.
http://i.stanford.edu/ ullman/mmds/ch1.pdf. Accessed 20 Jan 2019

7. (2018) Natural Language Toolkit NLTK 3.4 documentation. In: Nltk.org.
https://www.nltk.org/. Accessed 20 Jan 2019

8. (2017) language-check. In: PyPI. https://pypi.org/project/language-check/. Ac-
cessed 20 Jan 2019

9. (2019) scikit-learn: machine learning in Python scikit-learn 0.20.2 documentation.
In: Scikit-learn.org. https://scikit-learn.org/stable/. Accessed 20 Jan 2019

10. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discov-
ering clusters in large spatial databases with noise. AAAI Press

11. Dice, Lee R (1945) Measures of the Amount of Ecologic Association Between
Species

12. Fortunato S, Bergstrom C, Brner K, Evans J, Helbing D, Milojevi S, Petersen
A, Radicchi F, Sinatra R, Uzzi B, Vespignani A, Waltman L, Wang D, Barabsi A
(2018) Science of science. Science. doi: 10.1126/science.aao0185

13. Cohen W W, Ravikumar P D, Fienberg S E (2003) A comparison of string distance
metrics for name-matching tasks. IIWeb

14. Kamber, Han J. (2005) Data mining: concepts and technique. Morgan Kauffman
15. Jain A K, Murty M N, Flynn P J (1999) Data clustering: a review. ACM Com-

puting Surveys, vol. 31
16. Ferreira A A, Gonalves M A, Laender A H F (2012) A Brief Survey of Automatic

Methods for Author Name. SIGMOD Record, vol. 41
17. Usoltcev E (2016) meMo-Minsk - Overview. In: GitHub.

https://github.com/meMo-Minsk. Accessed 25 Jan 2019
18. (2019) Gephi - The Open Graph Viz Platform. In: Gephi.org. https://gephi.org/.

Accessed 25 Jan 2019
19. (2019) Matplotlib: Python plotting Matplotlib 3.0.2 documentation. In: Mat-

plotlib.org. https://matplotlib.org/. Accessed 25 Jan 2019

118

Distributed Representation of n-gram Statistics
for Boosting Self-Organizing Maps with

Hyperdimensional Computing�

Denis Kleyko1, Evgeny Osipov1, Daswin De Silva2, Urban Wiklund3, Valeriy
Vyatkin1, and Damminda Alahakoon2

1 Lule̊a University of Technology, Lule̊a, Sweden
{denis.kleyko, evgeny.osipov, valeriy.vyatkin}@ltu.se

2 La Trobe University, Melbourne, Australia
{d.desilva, d.alahakoon}@latrobe.edu.au

3 Ume̊a University, Ume̊a, Sweden
urban.wiklund@umu.se

Abstract. This paper presents an approach for substantial reduction of
the training and operating phases of Self-Organizing Maps in tasks of
2-D projection of multi-dimensional symbolic data for natural language
processing such as language classification, topic extraction, and ontol-
ogy development. The conventional approach for this type of problem is
to use n-gram statistics as a fixed size representation for input of Self-
Organizing Maps. The performance bottleneck with n-gram statistics is
that the size of representation and as a result the computation time of
Self-Organizing Maps grows exponentially with the size of n-grams. The
presented approach is based on distributed representations of structured
data using principles of hyperdimensional computing. The experiments
performed on the European languages recognition task demonstrate that
Self-Organizing Maps trained with distributed representations require
less computations than the conventional n-gram statistics while well pre-
serving the overall performance of Self-Organizing Maps.

Keywords: Self-Organizing Maps, n-gram statistics, hyperdimensional
computing, symbol strings

1 Introduction

The Self-Organizing Map (SOM) algorithm [23, 37] has been proven to be an
effective technique for unsupervised machine learning and dimension reduction
of multi-dimensional data. A broad range of applications ranging from its con-
ventional use in 2-D visualization of multi-dimensional data to more recent de-
velopments such as analysis of energy consumption patterns in urban environ-
ments [6, 8], autonomous video surveillance [27], multimodal data fusion [14],

� This work was supported by the Swedish Research Council (VR, grant 2015-04677)
and the Swedish Foundation for International Cooperation in Research and Higher
Education (grant IB2018-7482) for its Initiation Grant for Internationalisation, which
allowed conducting the study.

119

2 D. Kleyko et al.

Fig. 1. Outline of the conventional approach.

incremental change detection [26], learning models from spiking neurons [12],
and identification of social media trends [3,7]. The latter use-case is an example
of an entire application domain of SOMs for learning on symbolic data. This
type of data is typically present in various tasks of natural language processing.

As the SOM uses weight vectors of fixed dimensionality, this dimensionality
must be equal to the dimensionality of the input data. A conventional approach
for feeding variable length symbolic data into the SOM is to obtain a fixed
length representation through n-gram statistics (e.g., bigrams when n = 2 or
trigrams when n = 3). The n-gram statistics, which is a vector of all possible
combinations of n symbols of the data alphabet, is calculated during a pre-
processing routine, which populates the vector with occurrences of each n-gram
in the symbolic data. An obvious computational bottleneck of such approach is
due to the length of n-gram statistics, which grows exponentially with n. Since
the vector is typically sparse some memory optimization is possible on the data
input side. For example, only the indices of non-zero positions can be presented
to the SOM. This, however, does not help with the distance calculation, which is
the major operation of the SOM. Since weight vectors are dense, for computing
the distances the input vectors must be unrolled to their original dimensionality.
In this paper, we present an approach where the SOM uses mappings of n-gram
statistics instead of the conventional n-gram statistics. Mappings are vectors
of fixed arbitrary dimensionality, where the dimensionality can be substantially
lower than the number of all possible n-grams.

Outline of the proposed approach

The core of the proposed approach is in the use of hyperdimensional comput-
ing and distributed data representation. Hyperdimensional computing is a bio-
inspired computational paradigm in which all computations are done with ran-
domly generated vectors of high dimensionality. Fig. 1 outlines the conventional
approach of using n-gram statistics with SOMs. First, for the input symbolic
data we calculate n-gram statistics. The size of the vector s, which contains the
n-gram statistics, will be determined by the size of the data’s alphabet a and the
chosen n. Next, the conventional approach will be to use s as an input x to either
train or test the SOM (the red vertical line in Fig. 1). The approach proposed
in this paper modifies the conventional approach by introducing an additional

120

Distributed Representation of n-gram Statistics for Self-Organizing Maps 3

Fig. 2. Outline of the proposed approach.

step, as outlined in Fig. 2. The blocks in green denote the elements of the in-
troduced additional step. For example, the item memory stores the distributed
representations of the alphabet. In the proposed approach, before providing s to
the SOM, s is mapped to a distributed representation h, which is then used as
an input to the SOM (the red vertical line in Fig. 2).

The paper is structured as follows. Section 2 describes the related work.
Section 3 presents the methods used in this paper. Section 4 reports the results
of the experiments. The conclusions follow in Section 5.

2 Related Work

The SOM algorithm [23] was originally designed for metric vector spaces. It
develops a non-linear mapping of a high-dimensional input space to a two-
dimensional map of nodes using competitive, unsupervised learning. The out-
put of the algorithm, the SOM represents an ordered topology of complex enti-
ties [24], which is then used for visualization, clustering, classification, profiling,
or prediction. Multiple variants of the SOM algorithm that overcome structural,
functional and application-focused limitations have been proposed. Among the
key developments are the Generative Topographic Mapping based on non-linear
latent variable modeling [4], the Growing SOM (GSOM) that addresses the pre-
determined size constraints [1], the TASOM based on adaptive learning rates and
neighborhood sizes [36], the WEBSOM for text analysis [17], and the IKASL
algorithm [5] that addresses challenges in incremental unsupervised learning.
Moreover, recently an important direction is the simplification of the SOM al-
gorithm [2,18,35] for improving its speed and power-efficiency.

However, only a limited body of work has explored the plausibility of the
SOM beyond its original metric vector space. In contrast to a metric vector
space, a symbolic data space is a non-vectorial representation that possesses an
internal variation and structure which must be taken into account in computa-
tions. Records in a symbolic dataset are not limited to a single value, for instance,
each data point can be a hypercube in p-dimensional space or Cartesian product
of distribution. In [24], authors make the first effort to apply SOM algorithm to

121

4 D. Kleyko et al.

Fig. 3. Illustration of a Self-Organizing Map with nine nodes organized according to
the grid topology.

symbol strings, the primary challenges were the discrete nature of data points
and adjustments required for the learning rule, addressed using the general-
ized means/medians and batch map principle. Research reported in [38] takes a
more direct approach to n-gram modeling of HTTP requests from network logs.
Feature matrices are formed by counting the occurrences of n-characters cor-
responding to each array in the HTTP request, generating a memory-intensive
feature vector of length 256n. Feature matrices are fed into a variant of the
SOM, Growing Hierarchical SOMs [9] to detect anomalous requests. Authors re-
port both accuracy and precision of 99.9% on average, when using bigrams and
trigrams. Given the limited awareness and availability of research into unsuper-
vised machine learning on symbolic data, coupled with the increasing complexity
of raw data [25], it is pertinent to investigate the functional synergies between
hyperdimensional computing and the principles of SOMs.

3 Methods

This section presents the methods used in this paper. We describe: the basics
of the SOM algorithm; the process of collecting n-gram statistics; the basics
of hyperdimensional computing; and the mapping of n-gram statistics to the
distributed representation using hyperdimensional computing.

3.1 Self-Organizing Maps

A SOM [23] (see Fig. 3) consists of a set of nodes arranged in a certain topology
(e.g., a rectangular or a hexagonal grid or even a straight line). Each node j is
characterized by a weight vector of dimensionality equal the dimensionality of
an input vector (denoted as x). The weight vectors are typically initialized at
random. Denote a u× k matrix of k-dimensional weight vectors of u nodes in a

122

Distributed Representation of n-gram Statistics for Self-Organizing Maps 5

SOM as W. Also denote a weight vector of node j as Wj and i’th positions of
this vector as Wji. One of the main steps in the SOM algorithm is for a given
input vector x to identify the the winning node, which has the closest weight
vector to x. Computation of a distance between the input x and the weight
vectors in W, the winner takes all procedure as well as the weight update rule
are the main components of SOM logic. They are outlined in the text below.

In order to compare x and Wj , a similarity measure is needed. The SOM
uses Euclidian distance:

D(x,Wj) =

√√√√i=k∑
i=1

(xi −Wji)2, (1)

where xi and Wji are the corresponding values of ith positions. The winning
node (denoted as w) is defined as a node with the lowest Euclidian distance to
the input x.

In the SOM, a neighborhood M of nodes around the winning node w is
selected and updated; the size of the neighborhood progressively decreases:

γ(j, w, t) = e−l(j,w)/2σ(t)2 , (2)

where l(j, w) is the lateral distance between a node j and the winning node w
on the SOM’s topology; σ(t) is the decreasing function, which depends of the
current training iteration t. If a node j is within the neighborhood M of w then
the weight vector Wj is updated with:

�Wj = η(t)γ(j, w, t)(x−Wj), (3)

where η(t) denotes the learning rate decreasing with increasing t. During an
iteration t, the weights are updated for all available training inputs x. The
training process usually runs for T iterations.

Once the SOM has been trained it could be used in the operating phase.
The operating phase is very similar to that of the training one except that the
weights stored in W are kept fixed. For a given input x, the SOM identifies the
winning node w. This information is used depending on the task at hand. For
example, in clustering tasks, a node could be associated with a certain region.
In this paper, we consider the classification task, and therefore, each node would
have an assigned classification label.

3.2 n-gram statistics

In order to calculate n-gram statistics for the input symbolic data D, which is
described by the alphabet of size a, we first initialize an empty vector s. This vec-
tor will store the n-gram statistics for D, where the ith position in s corresponds
to an n-gram N i = �S1,S2, . . . ,Sn, � from the set N of all unique n-grams; Sj

corresponds to a symbol in jth position of N i. The value si indicates the number
of times N i was observed in the input symbolic data D. The dimensionality of

123

6 D. Kleyko et al.

s is equal to the total number of n-grams in N , which in turn depends on a
and n (size of n-grams) and is calculated as an (i.e., s ∈ [an × 1]). The n-gram
statistics s is calculated via a single pass through D using the overlapping sliding
window of size n, where for an n-gram observed in the current window the value
of its corresponding position in s (i.e., counter) is incremented by one. Thus, s
characterizes how many times each n-gram in N was observed in D.

3.3 Hyperdimensional computing

Hyperdimensional computing [16, 29, 31] also known as Vector Symbolic Ar-
chitectures is a family of bio-inspired methods of representing and manipulat-
ing concepts and their meanings in a high-dimensional space. Hyperdimensional
computing finds its applications in, for example, cognitive architectures [10], nat-
ural language processing [34], biomedical signal processing [20], approximation of
conventional data structures [21,28], and for classification tasks, such as gesture
recognition [22] [4], physical activity recognition [33], fault isolation [19]. Vectors
of high (but fixed) dimensionality (denoted as d) are the basis for representing
information in hyperdimensional computing. These vectors are often referred to
as high-dimensional vectors or HD vectors. The information is distributed across
HD vectors positions, therefore, HD vectors use distributed representations. Dis-
tributed representations [13] are contrary to the localist representations (which
are used in the conventional n-gram statistics) since any subset of the posi-
tions can be interpreted. In other words, a particular position of an HD vector
does not have any interpretable meaning – only the whole HD vector can be
interpreted as a holistic representation of some entity, which in turn bears some
information load. In the scope of this paper, symbols of the alphabet are the
most basic components of a system and their atomic HD vectors are generated
randomly. Atomic HD vectors are stored in the so-called item memory, which in
its simplest form is a matrix. Denote the item memory as H, where H ∈ [d× a].
For a given symbol S its corresponding HD vector from H is denoted as HS .
Atomic HD vectors in H are bipolar (HS ∈ {−1,+1}[d×1]) and random with
equal probabilities for +1 and −1. It is worth noting that an important prop-
erty of high-dimensional spaces is that with an extremely high probability all
random HD vectors are dissimilar to each other (quasi orthogonal).

In order to manipulate atomic HD vectors hyperdimensional computing de-
fines operations and a similarity measure on HD vectors. In this paper, we use
the cosine similarity for characterizing the similarity. Three key operations for
computing with HD vectors are bundling, binding, and permutation.

The binding operation is used to bind two HD vectors together. The result
of binding is another HD vector. For example, for two symbols S1 and S2 the
result of binding of their HD vectors (denotes as b) is calculated as follows:

b = HS1
�HS2

, (4)

where the notation � for the Hadamard product is used to denote the binding
operation since this paper uses positionwise multiplication for binding. An im-
portant property of the binding operation is that the resultant HD vector b is

124

Distributed Representation of n-gram Statistics for Self-Organizing Maps 7

dissimilar to the HD vectors being bound, i.e., the cosine similarity between b
and HS1

or HS2
is approximately 0.

An alternative approach to binding when there is only one HD vector is to
permute (rotate) the positions of the HD vector. It is convenient to use a fixed
permutation (denoted as ρ) to bind a position of a symbol in a sequence to an
HD vector representing the symbol in that position. Thus, for a symbol S1 the
result of permutation of its HD vector (denotes as r) is calculated as follows:

r = ρ(HS1). (5)

Similar to the binding operation, the resultant HD vector r is dissimilar to HS1 .

The last operation is called bundling. It is denoted with + and implemented
via positionwise addition. The bundling operation combines several HD vectors
into a single HD vector. For example, for S1 and S2 the result of bundling of
their HD vectors (denotes as a) is simply:

a = HS1
+HS2

. (6)

In contrast to the binding and permutation operations, the resultant HD vector
a is similar to all bundled HD vectors, i.e., the cosine similarity between b
and HS1

or HS1
is more than 0. Thus, the bundling operation allows storing

information in HD vectors [11]. Moreover if several copies of any HD vector are
included (e.g., a = 3HS1 +HS2), the resultant HD vector is more similar to the
dominating HD vector than to other components.

3.4 Mapping of n-gram statistics with hyperdimensional computing

The mapping of n-gram statistics into distributed representation using hyper-
dimensional computing was first shown in [15]. At the initialization phase, the
random item memory H is generated for the alphabet. A position of symbol Sj

in N i is represented by applying the fixed permutation ρ to the corresponding
atomic HD vector HSj

j times, which is denoted as ρj(HSj
). Next, a single

HD vector for N i (denoted as mN i
) is formed via the consecutive binding of

permuted HD vectors ρj(HSj) representing symbols in each position j of N i.
For example, for the trigram ‘cba’ will be mapped to its HD vector as follows:
ρ1(Hc) � ρ2(Hb) � ρ3(Ha). In general, the process of forming HD vector of an
n-gram can be formalized as follows:

mN i =

n∏
j=1

ρj(HSj), (7)

where
∏

denotes the binding operation (positionwise multiplication) when ap-
plied to n HD vectors.

Once it is known how to map a particular n-gram to an HD vector, mapping
the whole n-gram statistics s is straightforward. HD vector h corresponding to

125

8 D. Kleyko et al.

s is created by bundling together all n-grams observed in the data, which is
expressed as follows:

h =
an∑
i=1

simN i
=

an∑
i=1

si

n∏
j=1

ρj(HSj
), (8)

where
∑

denotes the bundling operation when applied to several HD vectors.
Note that h is not bipolar, therefore, in the experiments below we normalized it
by its �2 norm.

4 Experimental results

This section describes the experimental results studying several configurations of
the proposed approach and comparing it with the results obtained for the conven-
tional n-gram statistics. We slightly modified the experimental setup from that
used in [15], where the task was to identify a language of a given text sample
(i.e., for a string of symbols). The language recognition was done for 21 European
languages. The list of languages is as follows: Bulgarian, Czech, Danish, German,
Greek, English, Estonian, Finnish, French, Hungarian, Italian, Latvian, Lithua-
nian, Dutch, Polish, Portuguese, Romanian, Slovak, Slovene, Spanish, Swedish.
The training data is based on the Wortschatz Corpora [30]. The average size of
a language’s corpus in the training data was 1, 085, 637.3 ± 121, 904.1 symbols.
It is worth noting, that in the experiments reported in [15] the whole training
corpus of a particular language was used to estimate the corresponding n-grams
statistics. While in this study, in order to enable training of SOMs, each lan-
guage corpus was divided into samples where the length of each sample was set
to 1, 000 symbols. The total number of samples in the training data was 22, 791.
The test data is based on the Europarl Parallel Corpus4. The test data also rep-
resent 21 European languages. The total number of samples in the test data was
21, 000, where each language was represented with 1, 000 samples. Each sample
in the test data corresponds to a single sentence. The average size of a sample
in the test data was 150.3± 89.5 symbols.

The data for each language was preprocessed such that the text included only
lower case letters and spaces. All punctuation was removed. Lastly, all text used
the 26-letter ISO basic Latin alphabet, i.e., the alphabet for both training and
test data was the same and it included 27 symbols. For each text sample the n-
gram statistics (either conventional or mapped to the distributed representation)
was obtained, which was then used as input x when training or testing SOMs.
Since each sample was preprocessed to use the alphabet of only a = 27 symbols,
the conventional n-gram statistics input is 27n dimensional (e.g., k = 729 when
n = 2) while the dimensionality of the mapped n-gram statistics depends on the
dimensionality of HD vectors d (i.e., k = d). In all experiments reported in this
paper, we used the standard SOMs implementation, which is a part of the Deep
Learning Toolbox in MATLAB R2018B (Mathworks Inc, Natick, Ma.)

4 Available online at http://www.statmt.org/europarl/.

126

Distributed Representation of n-gram Statistics for Self-Organizing Maps 9

Fig. 4. The classification accuracy of the SOM trained on the conventional bigram
statistics (n = 2; k = 729) against the number of training iterations T . The grid size
was set to ten (u = 100). T varied in the range [5, 100] with step 5.

During the experiments, certain parameters SOM were fixed. In particular,
the topology of SOMs was set to the standard grid topology. The initial size
of the neighborhood was always fixed to ten. The size of the neighborhood and
the learning rate were decreasing progressively with training according to the
default rules of the used implementation. In all simulations, a SOM was trained
for a given number of iterations T , which was set according to an experiment
reported in Fig. 4. All reported results were averaged across five independent
simulations. The bars in the figure show standard deviations.

Recall that SOMs are suited for the unsupervised training, therefore, an extra
mechanism is needed to use them in supervised tasks such as the considered
language recognition task, i.e., once the SOM is trained there is still a need
to assign a label to each trained node. After training a SOM for T iterations
using all 22, 791 training samples, the whole training data were presented to the
trained SOM one more time without modifying W. Labels for the training data
were used to collect the statistics for the winning nodes. The nodes were assigned
the labels of the languages dominating in the collected statistics. If a node in the
trained SOM was never chosen as the winning node for the training samples (i.e.,
its statistics information is empty) then this node was ignored during the testing
phase. During the testing phase, 21, 000 samples of the test data were used to
assess the trained SOM. For each sample in the test data, the winning node was
determined. The test sample then was assigned the language label corresponding
to its winning node. The classification accuracy was calculated using the SOM
predictions and the ground truth of the test data. The accuracy was used as the
main performance metric for evaluation and comparison of different SOMs. It is
worth emphasizing that the focus of experiments is not on achieving the highest

127

10 D. Kleyko et al.

Fig. 5. The classification accuracy of the SOM against the grid size for the case of
bigram statistics. The grid size varied in the range [2, 20] with step 2.

possible accuracy but on a comparative analysis of SOMs with the conventional
n-gram statistics versus SOMs with the mapped n-gram statistics with varying
d. However, it is worth noting that the accuracy, obtained when collecting an
n-gram statistics profile for each language [15, 32] for n = 2 and n = 3 and
using the nearest neighbor classifier, was 0.945 and 0.977 respectively. Thus, the
results presented below for SOMs match the ones obtained with the supervised
learning on bigrams when the number of nodes is sufficiently high. In the case
of trigrams, the highest accuracy obtained with SOMs was slightly (about 0.02)
lower. While SOMs not necessarily achieve the highest accuracy compared to
the supervised methods, their important advantage is data visualization. For
example, in the considered task one could imagine using the trained SOM for
identifying the clusters typical for each language and even reflecting on their
relative locations on the map.

The experiment in Fig. 4 presents the classification accuracy of the SOM
trained on the conventional bigram statistics against T . The results demon-
strated that the accuracy increased with the increased number T . Moreover, for
higher values of T the predictions are more stable. The performance started to
saturate at T more than 90, therefore, in the other experiments the value of T
was fixed to 100.

The grid size varied in the range [2, 20] with step 2, i.e, the number of nodes
u varied between 4 and 400. In Fig. 5 the solid curve corresponds to the SOM
trained on the conventional bigram statistics. The dashed, dash-dot, and dotted
curves correspond to the SOMs trained on the mapped bigram statistics with
k = d = 500, k = d = 300, and k = d = 100 respectively.

The experiment presented in Fig. 5 studied the classification accuracy of
the SOM against the grid size for the case of bigram statistics. Note that the

128

Distributed Representation of n-gram Statistics for Self-Organizing Maps 11

Fig. 6. The training time of the SOM against the grid size for the case of bigram
statistics. The grid size varied in the range [2, 20] with step 2.

number of nodes u in the SOM is proportional to the square of the grid size.
For example, when the gris size equals 2 the SOM has u = 4 nodes while when
it equals 20 the SOM has u = 400 nodes. The results in Fig. 5 demonstrated
that the accuracy of all considered SOMs improves with the increased grid size.
It is intuitive that all SOMs with grid sizes less than five performed poorly
since the number of nodes in SOMs was lower than the number of different
languages in the task. Nevertheless, the performance of all SOMs was constantly
improving with the increased grid size, but the accuracy started to saturate at
about 100 nodes. Moreover, increasing the dimensionality of HD vectors d was
improving the accuracy. Note, however, that there was a better improvement
when going from d = 100 to d = 300 compared to increasing d from 300 to 500.
The performance of the conventional bigram statistics was already approximated
well even when d = 300; for d = 500 the accuracy was just slightly worse than
that of the conventional bigram statistics.

It is important to mention that the usage of the mapped n-grams statis-
tics allows decreasing the size of W in proportion to d/an. Moreover, it allows
decreasing the training time of SOMs. The experiment in Fig. 6 presents the
training time of the SOM against the grid size for the case of bigram statistics.
Fig. 6 corresponds to that of Fig. 5. The number of training iterations was fixed
to T = 100. For example, for grid size 16 the average training time on a laptop
for k = d = 100 was 2.7 minutes (accuracy 0.86); for k = d = 300 it was 8.0
minutes (accuracy 0.91); for k = d = 500 it was 16.9 minutes (accuracy 0.92);
and for k = an = 729 it was 27.3 minutes (accuracy 0.93). Thus, the usage of the
mapping allows the trade-off between the obtained accuracy and the required
computational resources.

129

12 D. Kleyko et al.

Fig. 7. The classification accuracy of the SOM trained on the mapped bigram statistics
(n = 2) against the dimensionality of HD vectors d (k = d). The grid size was set to
16 (u = 256). The number of training iterations T was fixed to 100.

In order to observe a more detailed dependency between the classification
accuracy and the dimensionality of distributed representations d of the mapped
n-gram statistics, an additional experiment was done. Fig. 7 depicts the results.
The dimensionality of distributed representations d varied in the range [20, 1000]
with step 20. It is worth mentioning that even for small dimensionalities (d <
100), the accuracy is far beyond random. The results in Fig. 7 are consistent with
the observations in Fig. 5 in a way that the accuracy was increasing with the
increased d. The performance saturation begins for the values above 200 and the
improvements beyond d = 500 look marginal. Thus, we experimentally observed
that the quality of mappings grows with d, however, after a certain saturation
point increasing d further becomes impractical.

The last experiment in Fig. 8 is similar to Fig. 5 but it studied the classifi-
cation accuracy for the case of trigram statistics (n = 3). The grid size varied in
the range [2, 20] with step 2. The solid curve corresponds to the SOM trained on
the conventional trigram statistics (k = 273 = 19, 683). The dashed and dash-
dot curves correspond to the SOMs trained on the mapped trigram statistics
with k = d = 5, 000 and k = d = 1, 000 respectively. The results in Fig. 8 are
consistent with the case of bigrams. The classification of SOMs was better for
higher d and even when d < an the accuracy was approximated well.

5 Conclusions

This paper presented an approach for the mapping of n-gram statistics into
vectors of fixed arbitrary dimensionality, which does not depend on the size
of n-grams n. The mapping is aided by hyperdimensional computing a bio-

130

Distributed Representation of n-gram Statistics for Self-Organizing Maps 13

Fig. 8. The classification accuracy of the SOM against the grid size for the case of
trigram statistics (n = 3). The number of training iterations T was fixed to 100.

inspired approach for computing with large random vectors. Mapped in this
way n-gram statistics is used as the input to Self-Organized Maps. This novel for
Self-Organized Maps step allows removing the computational bottleneck caused
by the exponentially growing dimensionality of n-gram statistics with increased
n. While preserving the performance of the trained Self-Organized Maps (as
demonstrated in the languages recognition task) the presented approach results
in reduced memory consumption due to smaller weight matrix (proportional to
d and u) and shorter training times. The main limitation of this study is that
we have validated the proposed approach only on a single task when using the
conventional Self-Organized Maps. However, it is worth noting that the pro-
posed approach could be easily used for other modifications of the conventional
Self-Organizing Maps such as Growing Self-Organizing Maps [1], where dynamic
topology preservation facilitates unconstrained learning. This is in contrast to
a fixed-structure feature map as the map itself is defined by the unsupervised
learning process of the feature vectors. We intend to investigate distributed rep-
resentation of n-gram statistics in structure-adapting feature maps in future
work.

References

1. Alahakoon, D., Halgamuge, S., Srinivasan, B.: Dynamic Self-Organizing Maps with
Controlled Growth for Knowledge Discovery. IEEE Transactions on Neural Net-
works 11(3), 601–614 (2000)

2. Appiah, K., Hunter, A., Dickinson, P., Meng, H.: Implementation and Applications
of Tri-State Self-Organizing Maps on FPGA. IEEE Transactions on Circuits and
Systems for Video Technology 22(8), 1150–1160 (2012)

131

14 D. Kleyko et al.

3. Bandaragoda, T.R., De Silva, D., Alahakoon, D.: Automatic Event Detection in
Microblogs using Incremental Machine Learning. Journal of the Association for
Information Science and Technology 68(10), 2394–2411 (2017)

4. Bishop, C.M., Svensén, M., Williams, C.K.: GTM: The Generative Topographic
Mapping. Neural computation 10(1), 215–234 (1998)

5. De Silva, D., Alahakoon, D.: Incremental Knowledge Acquisition and Self Learning
from Text. In: International Joint Conference on Neural Networks (IJCNN). pp. 1–
8. IEEE (2010)

6. De Silva, D., Alahakoon, D., Yu, X.: A Data Fusion Technique for Smart Home
Energy Management and Analysis. In: Annual Conference of the IEEE Industrial
Electronics Society (IECON). pp. 4594–4600 (2016)

7. De Silva, D., Ranasinghe, W., Bandaragoda, T., Adikari, A., Mills, N., Iddamal-
goda, L., Alahakoon, D., Lawrentschuk, N., Persad, R., Osipov, E., Gray, R.,
Bolton, D.: Machine Learning to Support Social Media Empowered Patients in
Cancer Care and Cancer Treatment Decisions. PloS One 13(10), 1–10 (2018)

8. De Silva, D., Yu, X., Alahakoon, D., Holmes, G.: A Data Mining Framework for
Electricity Consumption Analysis from Meter Data. IEEE Transactions on Indus-
trial Informatics 7(3), 399–407 (2011)

9. Dittenbach, M., Merkl, D., Rauber, A.: The Growing Hierarchical Self-Organizing
Map. In: International Joint Conference on Neural Networks (IJCNN). vol. 6, pp.
15–19 (2000)

10. Eliasmith, C.: How to Build a Brain. Oxford University Press (2013)
11. Frady, E.P., Kleyko, D., Sommer, F.T.: A Theory of Sequence Indexing and Work-

ing Memory in Recurrent Neural Networks. Neural Computation 30, 1449–1513
(2018)

12. Hazan, H., Saunders, D.J., Sanghavi, D.T., Siegelmann, H.T., Kozma, R.: Unsu-
pervised Learning with Self-Organizing Spiking Neural Networks. In: International
Joint Conference on Neural Networks (IJCNN). pp. 1–6 (2018)

13. Hinton, G., McClelland, J., Rumelhart, D.: Distributed Representations. In:
Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing. Explorations
in the Microstructure of Cognition. Volume 1. Foundations. pp. 77–109. MIT Press
(1986)

14. Jayaratne, M., Alahakoon, D., De Silva, D., Yu, X.: Bio-Inspired Multisensory
Fusion for Autonomous Robots. In: Annual Conference of the IEEE Industrial
Electronics Society (IECON). pp. 3090–3095 (2018)

15. Joshi, A., Halseth, J., Kanerva, P.: Language Geometry Using Random Indexing.
In: Quantum Interaction (QI). pp. 265–274 (2016)

16. Kanerva, P.: Hyperdimensional Computing: An Introduction to Computing in Dis-
tributed Representation with High-Dimensional Random Vectors. Cognitive Com-
putation 1(2), 139–159 (2009)

17. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM–Self-organizing maps
of document collections1. Neurocomputing 21(1-3), 101–117 (1998)

18. Kleyko, D., Osipov, E., De Silva, D., Wiklund, U., Alahakoon, D.: Integer Self-
Organizing Maps for Digital Hardware. In: International Joint Conference on Neu-
ral Networks (IJCNN). pp. 1–8 (2019)

19. Kleyko, D., Osipov, E., Papakonstantinou, N., Vyatkin, V.: Hyperdimensional
Computing in Industrial Systems: The Use-Case of Distributed Fault Isolation
in a Power Plant. IEEE Access 6, 30766–30777 (2018)

20. Kleyko, D., Osipov, E., Wiklund, U.: A Hyperdimensional Computing Framework
for Analysis of Cardiorespiratory Synchronization During Paced Deep Breathing.
IEEE Access 7, 34403–34415 (2019)

132

Distributed Representation of n-gram Statistics for Self-Organizing Maps 15

21. Kleyko, D., Rahimi, A., Gayler, R., Osipov, E.: Autoscaling Bloom Filter: Con-
trolling Trade-off Between True and False Positives. arXiv:1705.03934 pp. 1–13
(2017)

22. Kleyko, D., Rahimi, A., Rachkovskij, D., Osipov, E., Rabaey, J.: Classification and
Recall with Binary Hyperdimensional Computing: Trade-offs in Choice of Density
and Mapping Characteristic. IEEE Transactions on Neural Networks and Learning
Systems 29(12), 5880–5898 (2018)

23. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences (2001)

24. Kohonen, T., Somervuo, P.: Self-Organizing Maps of Symbol Strings. Neurocom-
puting 21(1-3), 19–30 (1998)

25. Kusiak, A.: Smart Manufacturing must Embrace Big Data. Nature News
544(7648), 23 (2017)

26. Nallaperuma, D., De Silva, D., Alahakoon, D., Yu, X.: Intelligent Detection of
Driver Behavior Changes for Effective Coordination Between Autonomous and
Human Driven Vehicles. In: Annual Conference of the IEEE Industrial Electronics
Society (IECON). pp. 3120–3125 (2018)

27. Nawaratne, R., Bandaragoda, T., Adikari, A., Alahakoon, D., De Silva, D., Yu,
X.: Incremental Knowledge Acquisition and Self-Learning for Autonomous Video
Surveillance. In: Annual Conference of the IEEE Industrial Electronics Society
(IECON). pp. 4790–4795 (2017)

28. Osipov, E., Kleyko, D., Legalov, A.: Associative Synthesis of Finite State Automata
Model of a Controlled Object with Hyperdimensional Computing. In: Annual Con-
ference of the IEEE Industrial Electronics Society (IECON). pp. 3276–3281 (2017)

29. Plate, T.A.: Holographic Reduced Representations: Distributed Representation for
Cognitive Structures. Stanford: Center for the Study of Language and Information
(CSLI) (2003)

30. Quasto, U., Richter, M., Biemann, C.: Corpus Portal for Search in Monolingual
Corpora. In: Fifth International Conference on Language Resources and Evaluation
(LREC). pp. 1799–1802 (2006)

31. Rahimi, A., Datta, S., Kleyko, D., Frady, E.P., Olshausen, B., Kanerva, P., Rabaey,
J.M.: High-dimensional Computing as a Nanoscalable Paradigm. IEEE Transac-
tions on Circuits and Systems I: Regular Papers 64(9), 2508–2521 (2017)

32. Rahimi, A., Kanerva, P., Rabaey, J.: A Robust and Energy Efficient Classifier
Using Brain-Inspired Hyperdimensional Computing. In: IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED). pp. 64–69 (2016)

33. Rasanen, O., Kakouros, S.: Modeling Dependencies in Multiple Parallel Data
Streams with Hyperdimensional Computing. IEEE Signal Processing Letters
21(7), 899–903 (2014)

34. Recchia, G., Sahlgren, M., Jones, P.K.M.: Encoding Sequential Information in Se-
mantic Space Models. Comparing Holographic Reduced Representation and Ran-
dom Permutation. Computational Intelligence and Neuroscience pp. 1–18 (2015)

35. Santana, A., Morais, A., Quiles, M.: An Alternative Approach for Binary and
Categorical Self-Organizing Maps. In: International Joint Conference on Neural
Networks (IJCNN). pp. 2604–2610 (2017)

36. Shah-Hosseini, H., Safabakhsh, R.: TASOM: a New Time Adaptive Self-Organizing
Map. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
33(2), 271–282 (2003)

37. Vesanto, J., Alhoniemi, E.: Clustering of the Self-Organizing Map. IEEE Transac-
tions on Neural Networks 11(3), 586–600 (2000)

133

16 D. Kleyko et al.

38. Zolotukhin, M., Hamalainen, T., Juvonen, A.: Online Anomaly Detection by using
n-gram Model and Growing Hierarchical Self-Organizing Maps. In: 8th Interna-
tional Wireless Communications and Mobile Computing Conference (IWCMC).
pp. 47–52 (2012)

134

Use of color for arrangement of web publication of
science news on the corporate site of the Siberian Branch

of Russian Academy of Sciences

Olga A. Klimenko

Institute of Computational Technologies SB RAS, Academician M.A. Lavrentiev avenue, 6,
630090, Novosibirsk, Russia

klimenko@ict.nsc.ru

Abstract. The corporate site of the Siberian Branch of the Russian Academy of
Sciences (SB RAS) www.sbras.ru has been operating since 1996 and represents
all aspects of the activities of a research corporation. The SB RAS provides sci-
entific and methodological guidance to 86 research organizations in the fields of
mathematics, mechanics, physics, chemistry, biology, geology, medicine, eco-
nomic and humanities, Computer Science, agricultural sciences. The corporate
website publishes daily news from institutes and research centers about basic
and applied research, conferences, symposia and seminars. On the news feed of
the site and in the SB RAS Database for news and research organizations are
associated with a certain color. For example, all news related to medical re-
search is colored red, economic news is colored yellow, energy news presented
in orange. Each month it is calculated how much news was presented on the
topic "Physical Sciences", "Chemical Sciences", "Humanities", etc. Using this
data, an infographic www.sbras.ru/en/about is created. Using color to systema-
tize scientific information makes it easier to identify trends.

Keywords: Database and information systems, Collections and archives, Web
publishing.

1 Introduction

Siberian Branch of the Russian Academy of Sciences (SB RAS) is the largest integra-
tor and the main expert of research and development, scientific educational, experi-
mental design and industrial organizations in the Eastern Russia. SB RAS was estab-
lished in 1957. The initiative originated from Mikhail Lavrentyev, Sergei Sobolev and
Sergei Khristianovich. Mikhail Lavrentyev became its founding chairman. The SB
RAS provides scientific and methodological guidance to 86 research organizations in
the fields of mathematics, mechanics, physics, chemistry, biology, geology, medicine,
economic and humanities, Computer Science, agricultural sciences. The central loca-
tion of the Siberian Branch is Novosibirsk. Research centers are established in Novo-
sibirsk, Tomsk, Krasnoyarsk, Irkutsk, Yakutsk, Ulan-Ude, Kemerovo, Tyumen, and

135

Omsk. Some of the research institutions are located in Barnaul, Biisk, Chita and Ky-
zyl.
The corporate site “Portal SB RAS” was created in 1996 by members of the Institute
of Computational Technologies SB RAS. Since its inception, Portal SB RAS has
expanded due to additional information systems. Portal SB RAS includes databases of
projects, conferences, scientific organizations. Annual reports of the SB RAS since
1995, and other important documents of the corporation are stored on the corporate
website. For example, the database of documents stores decisions on the organization
of new scientific institutions, information on appointments to the positions of direc-
tors of institutes. The Siberian Branch of the Russian Academy of Sciences publishes
a weekly corporate newspaper. The archive contains electronic copies of newspaper
issues since 1961.
Since 1996, the technological platforms on which the site was created have changed
repeatedly. Archive databases and archive systems have been preserved and become
part of the new site.

2 Webspace of the Siberian Branch of Russian Academy of
Sciences

Portal SB RAS, the sites of the Siberian institutes and universities are combined by
numerous links and form the academic webspace of the SB RAS (see Fig. 1).

Fig. 1. Academic webspace of the SB RAS. Sites of institutes and Portal SB RAS are repre-
sented by circles, they are connected by links.

136

Academic webspace can be studied using webometric methods, special programs,
methods of graph theory [1, 2]. This academic webspace of SB RAS was studied
using a special program - a crawler, which examined links between sites. The pro-
gram has found that the largest number of inbound and outbound links from sites of
institutes contains Portal SB RAS. From all the sites of Siberian institutes there are
links to the Portal SB RAS and vice versa. There is a group of sites that are most re-
lated. This group includes sites of the Institute of Computational Technologies SB
RAS, A.P. Ershov Institute of Informatics Systems SB RAS, Sobolev Institute of
Mathematics SB RAS, Institute of Cytology and Genetics SB RAS, State Public Sci-
entific-Technological Library of the Siberian Branch of the RAS and a number of
other sites. From the Siberian universities the Novosibirsk State University has the
largest number of links to the sites of the institutes and Portal SB RAS.

The webspace of the SB RAS is similar to the webspace of the Fraunhofer Society
in Germany and academic webspace of the Republic of Serbia [3, 4]. Academic
communities have a central site that is linked to all other sites. A distinctive feature of
the webspace of the SB RAS is the presence of a large number of links between insti-
tutions that are engaged in different areas of science. For example, there are links
between the sites of mathematical and humanitarian institutes, between physical and
chemical.

The webspace of the SB RAS has clusters within itself; in clusters, the connections
between sites are closer. A physical and mathematical cluster was found, which in-
cludes institutes that deal with mathematics, mechanics, physics, and computer sci-
ence. Another big cluster is the chemical and biological one, which unites institutes
that specialize in the field of biology, genetics, chemistry, agriculture and medicine.

3 New corporate website of the Siberian Branch of the Russian
Academy of Sciences with adaptive design

In 2016, a new corporate website of the Siberian Branch of the Russian Academy of
Sciences was created using freely distributed software on the Drupal platform [5]. The
new technological platform of Portal SB RAS has made it convenient to view the site
from mobile devices (see Fig. 2).
The site contains two databases, in one stores information about organizations and
employees [6], and documents that can be submitted on the site’s news feed are stored
in another database.

To add a document to the Database, you need to select a subject from the list:
 Mathematics and Computer Science
 Physical sciences
 Nanotechnology and information technology
 Energy, engineering, mechanics and control processes
 Chemical sciences
 Biological Sciences
 Earth Sciences

137

 Humanitarian sciences
 Economics
 Medical sciences
 Agricultural Sciences
 NSU - SB RAS
 Other categories

Fig. 2. Portal SB RAS. Section “The Siberian Branch, an overview”.

The classification features of the announcement on the news feed include "Compe-

titions and Grants", "Conferences", "General Meetings of the SB RAS" and other
events.

The following rubricator codes are indicated for official documents:
 Constitution and laws of the Russian Federation
 Decrees and orders of the President of the Russian Federation
 Decisions and orders of the Government of the Russian Federation
 Documents of federal ministries and departments
 Documents of the Russian Academy of Sciences
 Documents of the Novosibirsk Region and the Novosibirsk Scientific Center of

the Siberian Branch of the Russian Academy of Sciences
 Documents of the SB RAS
 Agendas of the Presidium of the SB RAS

138

Required fields to fill out when publishing news are "Title", "Summary", "Detailed
content", "Date of publication", "Event Date". To the text of the news, you can attach
an illustration in the form of a photo or a graphic, a presentation of the report, a link
to additional information. To determine the place of the news on the news tape indi-
cates the weight of the news. Usually, urgent and important news is published first in
the list of news in one day.

The database The organization and Employees [6] contains contact information for
all scientific institutions. The Base includes information on the leadership of the insti-
tutes and members of the Russian Academy of Sciences. Contact information consists
of business phone numbers, e-mail, postal address of the organization, website ad-
dress.

4 Use of color on the news feed of the corporate website of the
SB RAS

On the news feed of the site and in the SB RAS Database for news and research or-
ganizations are associated with a certain color. For example, all news related to medi-
cal research is colored red, economic news is colored yellow (golden), and energy
news is shown in orange. Biological sciences and agriculture are represented by dif-
ferent shades of green. For the presentation of news in mathematics, information
technology, nanotechnology and physics, shades of blue are used, from dark to tur-
quoise. The color of the earth - brown is used to refer to geological news. For news
related to two areas of science, mixed color is used. If the news relates to three or
more topics, it is painted in gray. Search for news and documents can be carried out
on one topic or two at a time, for example, to search for news that relate to physical,
mathematical, or chemical and biological research. Each month it is calculated how
much news was presented on the topic "Physical Sciences", "Chemical Sciences",
"Humanities", etc., and infographics are used to visualize it [7].
In 2018, over 1800 news on Portal SB RAS were associated with a specific subject
area of research, they were distributed as follows:

Nanotechnology and information technology - 16.6%
Physical Sciences - 15%
Biological sciences - 12.3%
Earth sciences - 10.9%
Chemical sciences - 9.5%
Power engineering, mechanical engineering, mechanics and control processes -

6.9%
Medical sciences - 6.8%
Economic Sciences - 6.5%
Mathematics and computer science - 6%
Humanities - 5.6%
Agricultural sciences - 3.9%

139

Analysis of the news related to the two topics showed that information technologies
have become more widely used in the humanities, as well as in economic and agricul-
tural sciences. In the past two years, news related to the biological, chemical and med-
ical sciences are regularly published on the SB RAS corporate website. These areas of
research are new and correspond to world trends. News analysis showed that there is a
strong relationship between nanotechnology, information technology and physics.
The least integrated were the agricultural and medical sciences, the humanities with
physics and the humanities with chemistry.

5 Conclusions

The corporate website of the Siberian Branch of the Russian Academy of Sciences
has accumulated a large amount of information about research conducted by Siberian
scientists. A special feature of the SB RAS is a wide range of scientific research and
integration between the sciences. The study of the academic web space of the SB
RAS has allowed us to find several scientific communities that include mathematical,
physical, chemical, biological and other institutions. News on interdisciplinary re-
search are presented on Portal SB RAS. The use of color in the news by areas of sci-
ence has given the visualization of the distribution of information on topics. Analysis
of information for 2018 showed the use of digital technology in all sciences, in medi-
cine, agriculture, economy.

6 Acknowledgment

The author is deeply grateful to Marina Filippova (A.P. Ershov Institute of Informat-
ics Systems SB RAS), Elena Rychkov and Igor Shabalnikov (Institute of Computa-
tional Technologies SB RAS) for the highly qualified technical and information sup-
port of Portal SB RAS.

References

1. Kosyakov, D.V., Gus’kov, A.E., Bykhovtsev, E.S.: Russia’s academic institutes as mir-
rored by webometrics. Herald of the Russian Academy of Sciences 86(6), 490-499 (2016).

2. Thelwall, M. A Web crawler design for data mining. Journal of Information Science. 27.
319–325 (2001)

3. Shokin, Yu.I., Vesnin, A.Yu., Dobrynin, A.A., Klimenko, O.A., Konstantinova, E.V.,
Rychkova, E.V., Savin, M.Yu. Studying of scientific web space by webometrics and graph
theory methods. In: Proceedings on MIT-2013, pp. 629-639. University of Pristina, Koso-
vo (2014)

4. Dehmer, M., Dobrynin, A.A., Konstantinova, E.V., Vesnin A.Yu., Klimenko, O.A.,
Shokin, Yu I., Rychkova, E.V., Medvedev, A.N.: Analysis of Webspaces of the Siberian
Branch of the Russian Academy of Sciences and the Fraunhofer-Gesellschaft. Information
Technology in Industry 1(6), 1-6 (2018).

5. SB RAS Homepage, https://www.sbras.ru/en, last accessed 2019/02/01.

140

6. SB RAS Organizations and Employees https://www.sbras.ru/en/sbras/db, last accessed
2019/02/01.

7. SB RAS Statistics on the subject of news https://www.sbras.ru/en/about, last accessed
2019/02/01.

141

Rapid Instruction Decoding for IA-32

Yauhen Klimiankou

Department of Software for Information Technologies
Belarusian State University of Informatics and Radioelectronics

6 P. Brovki Street, Minsk 220013 Belarus
klimenkov@bsuir.by

Abstract. This paper explains new performance-oriented instruction
decoder for IA-32 ISA. The decoder provides the functionality required
for program analysis and interpretation and exports simple interface for
conversion of code byte stream into a stream of generalized instruction
descriptions. We report measurements comparing our decoder with well-
known alternative solutions to demonstrate its superior efficiency.

Keywords: IA-32 · instructions decoding

1 Introduction

This paper attempts to shed light on an essential topic of design and implemen-
tation of efficient instruction decoders for CISC-like bytecodes. Importance of
instruction decoders can be emphasized by the fact, that a wide range of ap-
plications including simulators [10], emulators [1], virtual machines [4], tools for
static and dynamic analysis of executables [2, 5], disassemblers, decompilers [6],
and others uses them. In the case of its usage in the area of simulators, emula-
tors and virtual machines the decoder performance becomes one of the primary
contributors to the efficiency of the entire system.

We draw attention to different approaches used for design and implementa-
tion of software decoders for complex CISC-like ISAs with variable instruction
length. RISC-like ISAs usually assumes fixed instruction length and few easily
parsable and distinguishable instruction formats. That leads to straightforward
decoders both in hardware and in software implementations. Variable instruc-
tion length and variety of instruction formats pump significant complexity into
decoder design and implementation in the case of CISC-like ISAs with respective
degradation of performance.

We have developed a new instruction decoder for IA-32 ISA [9] which is
a canonical example of CISC ISA. The decoder design focuses on applications
in a broad range of domains including such as virtual machines and emulators
for which instruction decoding efficiency is critical. For example, such projects
as IBM PC compatible emulator Bosch [1] and hypervisor QEMU [4] can use
it as front-end. The proposed decoder is well-abstracted from back-end logic,
provides a pure interface and preserves universal nature in contrast to the original
instruction decoders used in these projects.

142

2 Y. Klimiankou

We have explored various techniques and approaches towards optimization
of instructions decoding performance. Our experience has shown that Mealy ma-
chine based decoder design leads to simple, flexible, extensible and efficient im-
plementations. Our decoder demonstrates that there is a significant performance
improvement which can be obtained by precaching of decoded instructions not
containing variable part. Such instructions are most frequently faced instructions
in industrial programs which amplifies the power of such performance trick.

Finally, we have compared the performance of our decoder implementation
for IA-32 ISA with popular and extensively used analogs. We show that our
decoder demonstrates its advantage in instructions decoding performance on
real industrial quality binary program code.

Our key contributions in this work are:

– To present instruction decoder supporting CISC-like bytecode that repro-
duces IA-32 ISA.

– To explore design principles and optimization tricks towards efficient decod-
ing of CISC-like bytecodes.

– To present the comparison between different instruction decoders for IA-32
ISA.

– To show that it is practical to use the design based on Mealy machine au-
tomata with use of table-guided dispatching, extensive precaching and sim-
plified output interface.

2 IA-32 Instruction Set Architecture

IA-32, also known as i386, is a 32-bit version of the x86 ISA introduced in
1985. Successive generations of microprocessors have extremely complicated x86
ISA over years. “Manual for Intel 8086” (1979) [7] contains only 43 pages about
instruction set. “Programmer’s Reference Manual for Intel 80386” [8] (1986)
already contains 421 pages. Finally, the current edition of “Intel 64 and IA-32
Architectures Software Developers Manual” (2018) [9] has 2214 pages describing
instructions.

Even Intel 8086 was a processor with CISC design and with a set of instruc-
tions of variable length (from 1 byte and up to 4 bytes) and with variable execu-
tion time. With time going, IA-32 became more and more CISC-like. Currently,
it supports a set of more than 200 instructions with lengths varying starting
from 1 byte and ending by 15 bytes.

IA-32 supports multiple addressing modes and complex memory access mech-
anisms. Most of the instructions in that ISA can reference memory directly. In
contrast to IA-32, RISC ISAs commonly rely on an especial pair of instructions
dedicated to data exchange between memory and registers while rest instructions
operate exclusively on registers. Availability of two memory addressing modes
and two functioning modes bring additional complexity to IA-32 architecture.

143

Rapid Instruction Decoding for IA-32 3

Opcode Argument
Types

Immediate
Values

Fig. 1: A general structure of binary instruction format of IA-32 ISA.

Argument

Simple Complex

RegisterIn-Memory Value (PRFX [BASE])

GPR:1 {AL,CL,DL,BL,AH,CH,DH,BH}

GPR:2 {AX,CX,DX,BX,SP,BP,SI,DI}

GPR:4 {EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI}

FPU:4 {ST,ST(1),ST(2),ST(3),ST(4),ST(5),ST(6),ST(7)}

SR:2 {ES,CS,SS,DS,FS,GS}

Direct In-Memory Value (PRFX [IMM])

Immediate Value (IMM)

In-Memory BASI (PRFX [BASE+INDX*SCALE+IMM])

In-Memory BSI (PRFX [BASE *SCALE+IMM])

In-Memory BAS (PRFX [BASE+INDX*SCALE])

Fig. 2: Instruction argument types supported by the IA-32 instruction set.

2.1 Instructions on IA-32

Instructions in IA-32 have the following general structure depicted in Figure 1.
As can be seen, every IA-32 instruction consists of three components: opcode,
argument types block and immediate values block, where only the opcode is
mandatory part while other parts are optional. Opcode bytes not only define
instruction behavior but also guides decoder about rest of the instruction bytes.

IA-32 instruction can have from 0 up to 3 either primitive or composite
arguments, as shown on Figure 2. The second ones either comes with immediate
value or use multiple registers. BASE INDX are one of the registers from the set
GPR:4. PRFX can accompany any memory-referencing argument to specify the
size of the referenced value explicitly. The list of prefixes includes byte, word,
dword, fword, qword, and tword (1,2,4,6,8 and 10 bytes respectively). SCALE
can take only values 1, 2, 4, and 8. IMM denotes an immediate value.

From a semantics viewpoint, every instruction in IA-32 consists of a com-
mand, three arguments and two immediate values associated with them. First
one is the only mandatory component. All other instruction parts are optional
and can be void. At the same time, only immediate values explicitly referenced
by arguments become meaningful.

2.2 Classification of IA-32 instructions

In contrast to RISC systems, IA-32 does not have uniform instruction encoding.
Besides that, there are few families of instructions. Each instruction from the
same family follows the same encoding rules. There are four general families of
instructions which are distributed over IA-32 decoding root map as depicted in
Figure 3.

144

4 Y. Klimiankou

M M M M F F F F F F F F F F F M
T T T T T T T T T S T T T T T T
S S S S T T T T S S T T T T T T
S S S S S S S S S S S S S S S S
M M S T F F F F S T S T T S T T
M M M M S S T T M M M M M M M M
S S S S S S S S S S S S T T T T
T T T T T T M M T T T T T T M M

F F F F S S T T F F F F S S T X
F F F F S S T T F F F F S S T T
F F F F S S T T F F F F S S T T
F F F F S S T T F F F F S S T T
T T T T T T T T T T T T T T T T
T T T T T T T T T T T T T T T T
T T F F T T T T S F S F T T T T
S S S S S S S S S S S S S S S S

0x00

0x10

0x20

0x30

0x40

0x50

0x60

0x70

0x80

0x90

0xA0

0xB0

0xC0

0xD0

0xE0

0xF0

0x0F

0x1F

0x2F

0x3F

0x4F

0x5F

0x6F

0x7F

0x8F

0x9F

0xAF

0xBF

0xCF

0xDF

0xEF

0xFF

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Fig. 3: Map of IA-32 decoding tree roots.

Tiny instructions. Tiny instructions represent a set of instructions for
which one or two bytes define entire semantics of instruction. Almost all com-
mands (instructions which do not have operands) (std), frequently used predi-
cates (instructions with only one operand) with in-register arguments (inc) and
even some operations (instructions with two operands) with in-register only ar-
guments (for example xchg eax, ecx) fall into that family.

Snap instructions. Snap instructions represent a family of instructions
which consist of one command byte and one immediate value following it. There
are two subclasses of snap instructions: predicates with an immediate value (push
imm), and operations with one fixed in-register argument and an immediate
value as a second argument (add eax, imm). The first byte of the instruction
defines its entire semantics, while the immediate value defines its operands.

Instructions with fixed and mixed commands. There is the only dif-
ference between these families. In instructions with fixed command, the first
byte of instruction explicitly defines command encoded. Instructions with mixed
commands use at least two bytes for command encoding. Both families consist of
encoding trees each leaf of which contains instructions with particular semantics
and encoding.

2.3 Encoding trees and instructions types.

IA-32 includes three types of decoding trees:

– Tree of completely manageable register-based operations.
– Tree of semi-manageable register-based operations.
– Tree of operations with an immediate argument.

145

Rapid Instruction Decoding for IA-32 5

Key

Root

L0 Root Root Var

00xxxxxx
01xxxxxx

10xxxxxx
11xxxxxx

0

DA

00rrr101

Tail

RR
00rrrlll

Imm4

DirWI
ssiiilll

xxxxx101

1

2

2

2Tail

00rrr100

3

DI

xx100101
bblll101

Imm4

3

3

4

TailWO

01rrrlll

Imm1

01rrr100

WO

xx100xxx

Imm1

WA

ssiiilll

Tail

Imm1

Tail WO

01rrr100
01rrrlll

Tail Imm4

WO WA

xx100xxx
ssiiilll

Imm4 Imm4

DA

Imm4

Fig. 4: Structure of IA-32 encoding tree.

Each tree contains four leaves on the first level, where first three leaves cre-
ate three stable triplets that define a type of encoding subtree. The fourth leaf
is highly-variable and differs between different decoding trees. Nevertheless, all
decoding trees follow the same structure depicted in Figure 4. All these com-
plexities introduced by encoding trees are a direct consequence of support of
multiple addressing modes listed above.

3 General architecture of EIDIA decoder

The best approach to the feeding of IA-32 instruction decoder is feeding in byte-
by-byte fashion. In that case, front-end receives control over decoder and on its
input stream of code bytes after processing of each byte of code. Thus, front-end
forms the input byte stream, while there is no intermediate buffering. More-
over, this feeding scheme completely releases decoder from feeding management
and control tasks. At the same time, the byte-by-byte feeding scheme implies
conditional generation of output instruction description. Figure 5 presents the
scheme of the interaction of front-end with EIDIA decoder. As can be seen on
the figure, the decoder can be in three states: decoding complete, decoding in-
complete, and undefined instruction found. When front-end founds decoder in
“Decoding incomplete” state, it routes self through a fast path to next feed-
ing round. Otherwise, it captures and processes decoded instruction (in case
of “decoding complete” state) or handles the exceptional situation (in case of
“undefined instruction” state).

146

6 Y. Klimiankou

Decoder

Instruction
Processor#UD Handler

Invalid
opcode

Decoding
complete

Decoding
incomplete

Feeder

Change
feeder state

Change
feeder state

Code byte

Code byte

Fig. 5: Scheme of interaction with EIDIA decoder.

The architecture of interfacing with decoder depicted in Figure 6 also reflects
the fact that it can be beneficial to consider decoder as a state machine in
general or as Mealy machine automata in particular and design decoder in the
appropriate way. Automata’s input is bytes of code. Internal states of decoding
can be represented as a graph of handlers, while the internal state of decoder,
in that case, will be represented by function pointer defining the current state
of decoding. The decoder has an initial state which represents start point in
instruction decoding, but it has no distinct finish state. Each time when decoder
either have instruction successfully decoded or have undefined opcode detected
it reports that decoding was finished and switches self to initial state. Therefore,
each state from which decoder can directly transit into the initial state can be
considered finish state.

Mealy machine basis of decoder allows applying extensive table-based dis-
patching of decoding. Multiple tables are in use. Routing tables switch decoder
onto appropriate handler depending on code byte at the input. Additional se-
mantic data table contains a generalized description of the instruction set. Dif-
ferent parts of decoder use this table which increases the uniformity of decoder
code, thus, improving the efficiency of CPU cache usage. At the same time,
during each decoding step EIDIA accumulates information about instruction
decoded, as well as, information which will guide decision making during next
decoding steps. Thus, EIDIA does not use instruction bytes as a path to the
complete instruction description, but assembles the description in a step-by-step
way. Furthermore, EIDIA reconfigures itself during each decoding step.

Following the state machine architecture with byte-by-byte feeding eliminates
all external dependencies from EIDIA. For example, EIDIA does not dynami-
cally allocate or manipulate memory and does not use C standard library at all.
Furthermore, EIDIA does not involved into the instruction byte stream man-
agement which eliminates frequently redundant preparations and checks of the
input byte stream.

147

Rapid Instruction Decoding for IA-32 7

4 Output interface of EIDIA

The output interface of decoder should be convenient for use and completely
cover general semantic of instruction. EIDIA returns instruction description rep-
resented in the form of a pointer to the next data structure:

s t r u c t I n s t r u c t i o n {
u in t 32 t command ;
u i n t 32 t args [3] ;
u i n t 32 t imms [2] ;

} ;

The output of the decoder has a size of 24 bytes and can incur significant
overhead on memory copying during transfer from the decoder to its front-end.
Thus, the efficient decoder should have an internal buffer which it uses for in-
struction construction during decoding. Decoder exports interface for access-
ing that buffer to the front-end. Therefore, when the back-end receives status
“Decoding complete” that status serves it as a signal that front-end can safely
capture instruction from the internal buffer using the provided interface. Fur-
thermore, front-end becomes able to perform access only those components of
instruction description which contain actual data. For example, if decoded in-
struction is a command (have no arguments), then backend can read command
opcode, using it determine that there are no arguments and finish work with
decoder buffer, hence performing access only to 4 bytes from 24 available bytes
of the buffer.

IA-32 has a subset of instructions with a fixed command and which have
encoding trees with reverse order of instruction arguments. They have the same
encoding as regular instruction. Encoding tree itself and hence first byte of in-
struction specifies the reverse ordering of arguments. Interface for access to in-
ternal buffer allows simplifying decoder internals because it preserves uniformity
of decoding algorithms. Such an especial interface can reverse arguments order
for backend at access time by logical mapping of the external view of the buffer
fields to respective internal implementation.

Especial interface to decoder buffer implements lazy output reset. Lazy reset
moves the burden of internal buffer cleanup from the stage of decoding to the
results fetching stage, which leads to performance penalty reduction. Decoder
front-end can cleanup only those fields of the internal buffer which were set
by decoder during assembling of instruction. At the same time, lazy reset can
eliminate redundant resetting of those fields which were not modified by the
decoder.

Finally, an especial interface provides an opportunity for extensive precaching
of ready-to-use generalized instruction descriptions. In case of decoding of tiny
instructions, the decoder can point output interface onto appropriate already
ready-to-use instruction description instead of filling of the default output buffer.

148

8 Y. Klimiankou

Platform A Platform B Platform C

CPU Intel Core i7-4600U AMD Phenom FX-8350 Intel Core i7-7500U

Architecture Haswell Bulldozer Kaby Lake

Codename Haswell-ULT Piledriver Kaby Lake-U

Frequency 2100 MHz 4000 MHz 2700 MHz

L1D cache 2 x 32KB 8 x 16KB 2 x 32KB

L1I cache 2 x 32KB 4 x 64KB 2 x 32KB

L2 cache 2 x 256KB 4 x 2MB 2 x 256KB

L3 cache 4MB 8MB 4MB

Table 1: Hardware used for performance evaluation

5 Evaluation

Table 1 presents the specification of CPUs of computer systems which we have
used for evaluation.

We have measured throughput of EIDIA in two scenarios. The first scenario
is pure binary instruction stream decoding. Results achieved for this scenario
show throughput in raw instructions decoding. In the second scenario, we have
measured throughput of the decoder which has backend attached. In the role
of the backend, we have used simple disassembler application that was designed
and implemented from scratch.

Finally, we have used two types of workload. Specially generated file contain-
ing all variants of IA-32 instructions (2,1152MB, 445215 instructions) represents
synthetic workload. In the role of real-world workload, we have used code sec-
tions extracted from Linux kernel file of version 3.13.0-37-generic (6.7546MB,
2141376 instructions).

To proof performance benefits of EIDIA, we have compared it with two IA-32
instruction decoders: Udis86 [6] and Intel XED [3]. Both decoders have disas-
sembler capabilities.

It would be interesting to compare EIDIA with decoders used in emulators
and virtual machines. However, such decoders are an integral part of VM exe-
cution engines, and their extraction is a nontrivial task. Furthermore, they do
not have disassembler backends which prevent macrobenchmarking.

The results of measurements are summarized in the Table 2. The numbers in
that table show the speedup in processing time achieved by EIDIA in comparison
to respective decoder specified in the column header. As can be seen, EIDIA is
from 21.09 up to 51.11 times more performant than UDis86 in pure instruction
decoding and from 7.54 up to 13.48 times more performant in disassembling
tasks. What is more important, the proposed solution provides throughput from
3.48 to 4.45 times better than Intel XED in instruction decoding tasks and
from 5.8 to 13.79 times better in disassembling tasks. EIDIA has demonstrated
at least 3.48 times better performance in all conducted experiments, and at the
same time stays agnostic to the underlying hardware platform and provides clear
isolation of decoding from front-end logic.

149

Rapid Instruction Decoding for IA-32 9

Task Workload Platform Udis86 Intel XED

Decoding Synthetic A 42,03 4,19

Decoding Synthetic B 31,13 3,58

Decoding Synthetic C 51,11 4,45

Decoding Real-World A 23,08 3,48

Decoding Real-World B 21,09 3,83

Decoding Real-World C 24,64 3,64

Disassembling Synthetic A 12,26 11,15

Disassembling Synthetic B 10,95 13,79

Disassembling Synthetic C 13,48 10,67

Disassembling Real-World A 9,16 6,18

Disassembling Real-World B 7,54 7,51

Disassembling Real-World C 9,15 5,80

Table 2: Speedup of the EIDIA decoder in instruction decoding comparing to other
instruction decoders for IA-32

6 Conclusion

In this paper, we have explored techniques of efficient instruction decoding for
IA-32. Our instructions decoder – EIDIA demonstrates that high-throughput
general purpose decoder based on Mealy machine with byte-by-byte feeding de-
livers high performance. Our instruction decoder exploits several performance-
oriented features including extensive precaching of decoded instructions; multi-
level table-guided dispatching; lazy reset of output and compact description of
instruction semantics. This features in application to the design of state machine
make decoder performant while preserving its general purpose nature. We have
compared EIDIA with analogs of industrial quality. The measurements have
shown that EIDIA has from 3.5 up to 4.5 times higher throughput than Intel
XED in case of pure decoding, and from 5.8 up to 13.8 times better in case of
disassembling. At the same time, EIDIA, in contrast to Intel XED, is agnostic
to host CPU.

References

1. bochs: The Open Source IA-32 Emulation Project (Home Page).
http://bochs.sourceforge.net/, 2017.

2. gem5. http://gem5.org/Main Page, 2017.
3. Intel XED. https://intelxed.github.io/, 2017.
4. QEMU. https://www.qemu.org/, 2017.
5. GitHub - dyninst/dyninst: DyninstAPI: Tools for binary instrumentation, analysis,

and modification. https://github.com/dyninst/dyninst, 2018.
6. Udis86 Disassembler Library for x86 / x86-64. http://udis86.sourceforge.net/,

2018.

150

10 Y. Klimiankou

7. Intel Corporation. The 8086 Family Users Manual. No. 9800722-03. October
1979.

8. Intel Corporation. Intel 80386 Programmer’s Reference Manual. No. 230985.
1986.

9. Intel Corporation. IntelR© 64 and IA-32 Architectures Software Developer’s
Manual: Instruction Set Reference . No. 325383-066US. March 2018.

10. Reshadi, M., Dutt, N. D., and Mishra, P. A retargetable framework for
instruction-set architecture simulation. ACM Trans. Embedded Comput. Syst. 5
(2006), 431–452.

151

Prediction of RNA Secondary Structure Based on
Optimization in The Space of Its Descriptors by The

Simulated Annealing Algorithm

Nikolay Kobalo1, Alexander Kulikov3 and Igor Titov3

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Russia
rerf2010rerf@yandex.ru

2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Russia
kulikovai12@gmail.com

3 Institute of Cytology and Genetics SB RAS, Russia
titov@bionet.nsc.ru

Abstract. The proportion of genome coding proteins is only a small part of a
whole genome (for example, about 5% in human’s genome). Among other
things the remaining part contains regulatory RNAs whose function depends on
their three-dimensional structure. Secondary structure is the first level of RNA
structure description (three-dimensional structure is approximated by secondary
structure).

Therefore the problem of determining the common secondary structure of
isofunctional RNA sequences (i.e., a set having similar functionality) is an
important and longstanding problem of bioinformatics. In this paper we present
the program which builds the secondary structure model for a such set of non-
homologous RNA sequences.

Secondary structure is described by directed acyclic graph i.e. multitree. The
problem of determining the model of secondary structure is reduced to the
discrete optimization task in the space of structure multitrees. The optimizable
function depends on the energy of the referenced sequences being folded into
this structure.

The optimization task is solved by simulated annealing algorithm. We
developed the program for building a common secondary structure model of
RNA and compared it with the existing solutions on the set of mobile group II
introns.

Keywords: RNA, secondary structure prediction, mobile group II intron,
optimization, simulated annealing, software.

1 Introduction

The secondary structure of RNA describes the interactions between the nucleotide
bases of RNA molecule. Due to these interactions, the RNA can fold into a complex
spatial configuration. The secondary structure is the first level of description of this
configuration.

152

2

The RNA sequence is modeled by a symbol sequence, where each of the 4

nucleotides represented in the RNA has its own symbol: A (Adenine), C (Cytosine),
G (Guanine) and U (Uracil). The secondary structure of RNA is formed due to the
ability of nucleotides to chemically bind, forming pairs: A-U, G-U or G-C.

In Fig. 1 shows an example of a tRNA secondary structure and shows the elements
of which it is composed. This diagram shows how the one-dimensional nucleotide
sequence folds into a two-dimensional structure, due to the formation of binds
between individual nucleotides. As can be seen, the secondary structure consists of
two main types of elements - the stems formed by paired nucleotides and the loops -
free sequences of unrelated nucleotides.

An important task of bioinformatics is the problem of predicting the secondary
structure of RNA by its nucleotide sequence. The same sequence can be folded into a
large number of different secondary structures, therefore, in order to correctly predict
the real structure, it is necessary to draw additional assumptions. One of these
assumptions is that a sequence that is realized in nature must possess the minimum
possible thermodynamic energy. In addition, RNA with similar functionality in an
organism will likely have a similar secondary structure, so for such sequences a
general structure that satisfies the principle of minimum energy can be found.
 There are many algorithms and software implementations designed to predict the
secondary structure of single sequences (RNAFold, MFold, SARNA-Predict), as well
as the common structure of a sequence group (RNAStructure Multialign,
RNAStructure Multialign, PFold). However, currently existing methods make it
possible to effectively build models of secondary structures only for small sets of
sequences. In addition, they do not work well with sets of low-homologous sequences
and do not allow to take into account a priori information about the structure of
sequences.

This paper presents a new method for constructing a secondary structure model for
a set of sequences. This method is based on reducing the problem of constructing a
model to the problem of discrete optimization in the space of all possible models, and
the optimized parameter is the energy of the resulting structure [1].

153

3

Fig. 1. An example of the secondary structure of RNA

2 Basic requirements for the secondary structure
prediction method

The following requirements are imposed on our method.

 Ability to build models for sets of sequences of any size. At the same time, it
should detect and correctly handle the situation when the set is a mixture of
sequences that actually have different secondary structure.

 Ability to build models for sequences that are not as similar as possible.
 Sometimes information about the secondary structure of sequences of a certain

type (for example, introns or tRNA) is known in advance. In this case, the task is
reduced to the construction of a refined secondary structure that satisfies the given
general constraints. Therefore, the method should allow to set this a priori
information and take it into account when building a model.

 After setting the initial parameters and a priori information about the structure, the
system should work in automatic mode and not require manual intervention.

 The system must provide a practically acceptable speed of building a model.

3 Review of existing software for predicting the secondary
structure of RNA

There are many algorithms and their implementations for predicting the secondary
structure of RNA sequences, for example RNAFold, mfold, CentroidFold,
RNAStructure Multialign, RNAStructure Multialign, PFold, SARNA-Predict.

Let us consider in more detail those methods that satisfy the requirements for the
algorithm formulated above.

154

4

 RNAStructure Multialign - predicts the secondary structure of a set of three or
more RNA sequences using the minimum energy estimate. [2]

 RNAStructure TurboFold - predicts the secondary structure of two or more
sequences. It generates pairwise alignments for the set using a hidden markov
model, which supplies extrinsic information to one of three selectable folding
modes. [3]

 PFold - this algorithm allows to specify some a priori information about the
secondary structure, such as the exact position of the symbols that should be paired
in the resulting structure or, in contrast, free [4].

4 Materials and Methods

4.1 Programs and Test Data

 Our method uses the RScan program [5] to determine the correspondence of the
constructed model of the secondary structure to specific sequences and calculate its
energy. The energy is measured by RScan in ES units used by RScan, which is
energy in kcal/mol, multiplied by 10 and taken with the opposite sign.

 To test the program, a set of 40 sequences was used, each 72 symbols in length,
with the same secondary structure shown in Fig. 4. These sequences were taken
from rfam [6]. For sequences from this set, the value of the optimal secondary
structure energy was calculated by the RNAFold program, which builds an optimal
secondary structure for single sequences [7].

 Sequences from the family with a known secondary structure were used - the
sequences of the first domain of the following mobile introns of group II [8,9] were
used: Pylaiella littoralis cox1.I3 and 8 other introns, with the first domain similar to
it in its secondary structure: Thalassiosira pseudooana cox1.I2, Allomyces
macrogynus cox1.I3, Podaspora anserina cox1.I1, Podaspora anserina cox1.I4,
Podaspora comata cox1.I1, Kluyveromyces lactis cox1.I1, Saccharomyces
cerevisiae cox1.I2 and Schizosaccharomyces pombe cox1.I1. The average length
of these sequences is 405 nucleotides.

 To compare programs, a set of 10 tRNA sequences from rfam tRNA-Sec RF01852
[10] were also used. The average length of the sequences of this set is 89 symbols.

4.2 Data Representation

The model of the secondary structure of RNA is represented as an oriented acyclic
graph — a multi-tree. In this case, the stems are represented by the edges of a multi-
tree, and the loops – by the vertices.

Each element of the tree has a set of attributes that define restrictions on the
elements of the secondary structure. The following attributes are supported:

 Permitted length range of elements (loops and stems) in symbols.
 The sequence of nucleotides, which must necessarily be present on this element

and its position relative to the beginning of the element.

155

5

For example, in Fig. 2b shows an example of a secondary structure model, and Fig. 2a
- its representation in the form of a multi-tree.

Fig. 2. a: Multi-tree modeling the secondary structure of RNA; b: The corresponding secondary
structure of RNA. The lengths of the stems are expressed in bp - the number of paired symbols
forming the stem, and the length of the loops in nt - is the length of the sequence forming the
loop in the symbols. The symbols B, R, V, K, M mean that at this place in the sequence there
can be not one specific symbol, but one of the set of symbols: B = U or G or C, R = A or G, V

= A or G or C, K = U or G, M = A or C

5 Method Description

5.1 Reducing to Discrete Optimization Task

The problem of building a model of the secondary structure of a set of sequences is
reduced to the discrete optimization task as follows:

Let be:
 �– is the set of all admissible multi-trees representing the secondary structure.
 � = {��|� � �∗� � � {�� �� �� ��� - is the finite set of words in the alphabet a, u, g,

c, representing the set of sequences for which the secondary structure model is
built.

 �(�� �)� � � � � ��� - is a function that calculates for a given multi-tree and
sequence the value of the energy of a given sequence, folded into a given
structure. �(�� �) = ∞, if the sequence � cannot be folded into the structure �.

 �(�� �) - is the number of sequences � � �, such that �(�� �) < ∞.
 �(�� �) – is the average energy for all sequences � � �, such that �(�� �) < ∞.
 �(�� �) – is the average computation time for �(�� �) in milliseconds.

Then the expression �(�) = ����(�� �) � ���(�� �) � ���(�� �) defines the

objective function for the problem of discrete optimization in the multi-tree space �.

156

6

Coefficients ��� ��� �� are selected in each specific case manually and set when the
program is started.

In this expression, the first term takes into account the energy of the secondary
structure, which is a measure of its stability and should be minimized. The second
term allows to take into account the calculation time of the objective function using
the RScan program. The inclusion of this term in the objective function is important
from a practical point of view, because it allows to speed up the calculation. The third
term of the expression allows to build a model for as many sequences as possible
from the original set. At the same time, it allows the algorithm to correctly handle the
situation when the set of sequences is an actual mixture of sets with different
secondary structure.

5.2 Solution of the optimization task

To solve the optimization task described above, an annealing simulation algorithm
was applied.
T = T0
While cost function changes
 Temp = Kt*Temp
 Tnew = modifyTree(T)
 If P(T, Tnew, Temp)
 T = Tnew
Result = T

Here:

 0 < Kt < 1 - coefficient of temperature change
 P(T, Tnew, Temp) - function that takes the true value with the following

probability:

�(�) = �
�� �(�� �) � �(����� �)

exp (− �(�� �) − �(����� �)
����)� �(�� �) � �(����� �)

To start the computation, you must specify some initial model of the secondary
structure ��. The modifyTree is a function that applies one or more mutation
operators to a multi-tree:

 Changing the value of a numeric attribute of a multi-tree element (for example,
the range of lengths or the position of the consensus sequence, if specified).
 Adding a leaf to the tree, or deleting an existing one.
 Adding a vertex to an arbitrary multi-tree location, or deleting an existing one.

All the described operators select a part of the tree for modification at random. The
last two operators correspond to the addition or removal from the tree of a random
element of the secondary structure - a stem or loop, as shown in Fig.3a and Fig. 3b.

157

7

The described algorithm was implemented in java and is available on github [11].
To calculate the value of the function , the RScan program is used.

Fig. 3. a: Modification of the secondary structure by adding or removing a multi-tree leaf:; b:
Modification of the secondary structure by adding or removing the inner vertex of a multi-tree.

6 Testing

6.1 Evaluation of the accuracy of the solution

To verify the accuracy of solving the optimization task found by the implemented
algorithm, a set of 40 sequences with the same optimal secondary structure was
formed and the implemented program was launched on it. The test sequences were
taken from the rfam tRNA RF00005 family. Their reference secondary structure was
constructed using the RNAFold program, and sequences with the same secondary
structure were selected.

158

8

The following parameters were used: �� = 10� �� = 1� �� = 10.
Table 1 shows the optimal and program-determined values of each term of the

objective function.

Table 1. Comparison of optimal and predicted secondary structure models

Structure

Time of
computation,
ms

Optimal energy,
�� = −10 ̇����/���

Number of
sequences

Cost
function

Optimal 40 144 40 -1800
Predicted 169 126 40 -1491

The sensitivity and F-measure were also calculated [12]. Sensitivity and f-measure

measures the quality of the binary classification algorithm.
Let the classification algorithm answer the question whether a given object belongs

to a certain class or not. Then sensitivity expresses the ratio of number of objects
correctly assigned by the algorithm to this class to the number of objects that actually
belong to this class.

Specificity is the ratio of the number of objects not related by an algorithm to a
class of objects to the number of objects, which are really not related to this class.

Then the F-measure is calculated as follows:

� − ������� = � ����������� � �����������
����������� � �����������

In our case, the objects that need to be classified were the symbols pairs in the
sequence, which in the secondary structure must be paired.

We got the following result:

 Sensetivity = 0.9
 F-Measure = 0.95

In Fig. 4b shows the optimal secondary structure of the considered set of
sequences, and Fig. 4a - predicted by the program.

159

9

Fig. 4. a: Predicted secondary structure for test set; b: Optimal secondary structure of the test

set.

6.2 Comparison of programs

The program was also tested on a sample of the rfam family tRNA-Sec sequences.
For each predicted structure, the number of erroneously predicted paired bases was
calculated. Then, sensitivity and F-measure were calculated for all sequences. The
results obtained for all the programs compared are shown in Table 2.

Table 2. Comparison of programs on a sample of transport RNA sequences

Program

Sensitivity F-measure Time of computation

Simulated
Annealing

0.79 0.8 13 minutes

PFold 0.42 0.5 2 seconds.
RNAStructure
Multialign

0.8 0.82 7 minutes

RNAStructure
TurboFold

0.79 0.82 40 seconds.

Also, the programs were launched on a set of 9 group II introns. We took those

introns, the secondary structure of which best corresponds to the generalized group II
intron secondary structure [13].

Table 3 shows the program comparison

Table 3. Comparison of programs on a sample of group II introns

Program Sensitivity F-measure Time of computation
Simulated 0.51 0.53 ~112 hours.

160

10

Annealing
PFold 0.06 0.07 6 seconds.
RNAStructure
Multialign

0.38 0.4 ~21 hours.

RNAStructure
TurboFold

0.46 0.47 320 seconds.

As one can see from the Tables 2-3, on the set of small sequences of tRNA with an

average length of 89 nucleotides, the proposed method gives the results comparable
with other existing methods. However, for large sequences of group II introns with an
average length of 405 nucleotides and complex secondary structure, our method gives
more accurate results.

Acknowledgements

The work of I.T. was supported by the Federal Agency of Scientific Organizations
(project #0324-2019-0040).

References

1. Skiena, Steven. The Algorithm Design Manual (2nd ed.). Springer Science+Business
Media (2010)

2. Reuter, Jessica & H. Mathews, David. (2009). RNAstructure: Software for RNA
Secondary Structure Prediction and Analysis. Journal of biomolecular Structure &
Dynamics. 26. 831-832.

3. Harmanci, A.O., Sharma, G., and Mathews, D.H.: TurboFold: Iterative Probabilistic
Estimation of Secondary Structures for Multiple RNA Sequences. BMC Bioinformatics,
12:108. (2011). doi: 10.1186/1471-2105-12-108

4. Z. Sukosd, B. Knudsen, J. Kjems, C. N. S. Pedersen.: PPfold 3.0: PPfold 3.0: Fast RNA
secondary structure prediction using phylogeny and auxiliary data. Bioinformatics 28(16),
2012. doi: 10.1093/bioinformatics/bts488

5. http://www.softberry.com/freedownloadhelp/rna/rscan/rscan.all.html
6. Rfam family of tRNA http://rfam.xfam.org/family/RF00005
7. Jaeger, J. A., Turner, D. H. and Zuker, M.: Improved predictions of secondary structures

for RNA. Proc. Natl Acad. Sci. USA (1989), 86, 7706-7710
8. Manuel A. Candales, Adrian Duong, Keyar S. Hood, Tony Li, Ryan A. E. Neufeld, Runda

Sun, Bonnie A. McNeil, Li Wu, Ashley M. Jarding, and Steven Zimmerly.: Database for
bacterial group II introns. Nucleic Acids Research (2012) 187-190. doi:
10.1093/nar/gkr1043

9. Jean-Marc Fontaine, Didier Goux, Bernard Kloareg, Susan Loiseaux-de Goer.: The
Reverse-Transcriptase-Like Proteins Encoded by Group II Introns in the Mitochondrial
Genome of the Brown Alga Pylaiella littoralis Belong to Two Different Lineages Which
Apparently Coevolved with the Group II Ribosyme Lineages. J Mol Evol (1997) 44:33–
42. doi:10.1007/PL00006119

10. Rfam family of selenocysteine transfer RNA http://rfam.xfam.org/family/RF01852

161

11

11. https://github.com/rerf2010rerf/RNAStructBuilder
12. Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Measure to ROC,

Informedness, Markedness & Correlation" (PDF). Journal of Machine Learning
Technologies. 2 (1): 37–63

13. Steven Zimmerly and Cameron Semper.: Evolution of group II introns. Zimmerly and
Semper Mobile DNA (2015) 6:7. doi: 10.1186/s13100-015-0037-5

162

Towards Automatic Deductive Verification of
C Programs Over Linear Arrays�

Dmitry Kondratyev[0000−0002−9387−6735], Ilya Maryasov[0000−0002−2497−6484],
and Valery Nepomiaschy[0000−0003−1364−5281]

A. P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences
6, Acad. Lavrentjev pr., Novosibirsk 630090, Russia

apple-66@mail.ru, {ivm, vnep}@iis.nsk.su
http://www.iis.nsk.su

Abstract. The generation and proving of verification conditions, which
correspond to loops, may cause difficulties during deductive verification
because the construction of required invariants is a challenge, especially
for nested loops. The methods of invariant synthesis are often heuristic
ones. Another way is the symbolic method of loop invariant elimination.
Its idea is to represent a loop body in a form of special replacement
operation under certain constraints. This operation expresses loop effect
with possible break statement in a symbolic form and allows introducing
an inference rule, which uses no invariants in axiomatic semantics. This
work represents the further development of this method. The inner loops
are interesting because of the higher nesting level, the more complicated
loop invariant. A good example for this case to verify is a class of lin-
ear array sorting programs, which iteratively increase the sorted part. In
this paper, we consider the insertion sort program. A special algorithm
was developed and implemented to prove verification conditions auto-
matically in ACL2. It generates automatically auxiliary lemmas, which
allow to prove obtained verification conditions in ACL2 successfully in
automatic mode.

Keywords: C-light · Loop invariants · Mixed axiomatic semantics · Def-
inite iteration · Arrays · Sorting · ACL2 · Verification · Hoare logic.

1 Introduction

C program verification is an urgent problem today. Some projects (e.g. [2, 4]) sug-
gests different solutions. But none of them contains any methods for automatic
verification of loop-containing programs without invariants. As it is known, in
order to verify loops we need invariants whose construction is a challenge. There-
fore, the user has to provide these invariants. For many cases, it is a difficult
task.

� This research is partially supported by RFBR grant 17-01-00789.

163

2 D. Kondratyev et al.

Tuerk [16] suggested to use pre- and post-conditions for while-loops, but
the user still has to construct them himself. Li et al. [10] developed a learning
algorithm of loop invariants generation, but their method does not support array
operations and the break statement in the loop body. Galeotti et al. [5] improved
a well-known method of post-condition mutation by a combination of test case
generation and dynamic invariant detection. However, this approach failed to
infer full invariant for sorting programs. Srivastava et al. [15] proposed a method,
which is based on user-provided invariant templates. This method also is not
able to perform a full verification of sorting programs. Kovács [9] developed the
method of the automatic invariant generation for the P-solvable loops, where
right operands of assignment statements in the loop body must have a form of
polynomial expression and the break statement is not considered.

We consider loops with certain restrictions [14]. We extend our mixed ax-
iomatic semantics of the C-light language [1] with a new rule for verification
of such loops, based on the replacement operation [14]. The special verification
conditions are generated with the help of this rule.

In our previous paper [8], we considered the strategy of automatic proving of
verification conditions. It can be applied, if the program specification describes
whether the break statement occurred or not. The new goal is the verification
of the insertion sort program, which has different specification.

Sorting programs are programs over changeable arrays with loop exit. Their
specifications contain functions with concatenation property. These programs
can contain downward loops and can use the value of loop counter after iterations
are finished. Thus, we had to change our algorithm of replacement operation
generation. Also, we overcame the difficulties in proving verification conditions
by developing new strategies of proof. This paper describes the solution of these
problems.

2 Preliminary Concepts

We develop a two-level system of deductive verification of the C-light programs
[13]. The C-light language is a powerful subset of C language. To prove obtained
in our system verification conditions, we use the theorem prover ACL2 [6].

The input language of ACL2 is an applicative dialect of Common Lisp lan-
guage, which supports only functional paradigm and does not support imperative
one.

Since Common Lisp language focuses on list processing, arrays of the C-light
language we simulate by lists. Consider list operations in ACL2. If expr is an
expression of ACL2 language, then (update-nth i expr l) is a new list, which
coincides with a list l except for i-th element, whose value is expr. The function
len returns the length of a list.

To verify programs without invariants, we implemented the method of loop
invariants elimination for definite iteration [14] in our system. Our previous
works [11, 12] dealt with definite iteration over unchangeable data structures

164

Towards Automatic Deductive Verification of C Prog. Over Linear Arrays 3

with / without loop exit. In this paper, we moved to changeable data structures
with possible break statement in the loop body.

Consider the statement for x in S do v := body(v, x) end, where S is
a structure, x is the variable of the type “an element S”, v is a vector of loop
variables, which does not contain x and body represents the loop body com-
putation, which does not modify x and which terminates for each x ∈ S. The
structure S can be modified as described below. The loop body can contain only
the assignment statements, the if statements, possibly nested, and the break

statements. Such for statement is named a definite iteration. Let v0 be the
vector of values of variables from v just before the loop. To express the effect
of the iteration let us define a replacement operation rep(v, S, body, n), where
rep(v, S, body, 0) = v0, rep(v, S, body, i) = body(rep(v, S, body, i − 1), si) for all
i = 1, 2, . . . , n.

A number of theorems, which express important properties of the replacement
operation, were proved in [14].

The inference rule for definite iterations has the form:

{P} A; {Q(v ← rep(v, S, body, n))}
{P} A; for x in S do v := body(v, x) end {Q}

Here A are program statements before the loop. We find the weakest pre-
condition applying the mixed axiomatic semantics [1] of the C-light language.

3 Generation of Replacement Operation

In this paper, we extend the class of definite iterations by downward iteration

for (i = n - 1; i >= 0; i--) v := body(v, i) end,

where n is the number of elements of array.
The definition of rep is generated by a special translator [8]. The statements

of the loop body are translated to the constructions of the ACL2 language. The
fields of the structure of the type frame correspond to the variables of v and
the function frame-init creates the object of the type frame with given field
values.

For downward iteration, the generator of rep was modified. Firstly, it has
to generate not only the structure frame but the structure envir. It stores
the values of variables, which are used but are not modified inside the loop.
Moreover, the generator makes a definition of the function envir-init, which
creates an object of the type envir with given field values. The structure envir
has also a dedicated field upper-bound, whose value is an inaccessible upper
bound of the loop counter, which is equal to (n− 1) + 1.

Secondly, in the case of downward iteration, the value of loop counter is not
equal to the number of iteration. In order to distinguish from loop counter i, the
first argument of rep is called iteration. Therefore, the generator has to include
not only the elements of the vector v, but also the loop counter to the fields of

165

4 D. Kondratyev et al.

the structure frame. This allows using the value of the loop counter after loop
execution.

One of the restrictions of the symbolic method [14] is that the loop counter is
not modified by the loop body. So the third change of the generator is the usage
of the difference between the upper bound and iteration number as the value of
loop counter in the body of rep. In the case of iteration continuation, the loop
counter is initialized by the difference between the same value and 1. In the case
of the loop exit, the loop counter is not modified. Note that such approach can
simplify the proof because it expresses the value of the loop counter explicitly.

4 Verification of Insertion Sort Program

Let us demonstrate the motivating example. Consider the following insertion
sort program, which orders a given linear array a of the length n:

/* P */ void insertion_sort(int a[], int n) {int k, i, j;

/* INV */ for (i = 1; i < n; i++) {

k = a[i];

for (j = i - 1; j >= 0; j--) {

if (a[j] <= k) break;

a[j + 1] = a[j];}

a[j + 1] = k;}}/* Q */

The program pre-condition, post-condition, and invariant have the form:

P ≡ 0 < n ∧ a = a0 ∧ n ≤ len(a0), Q ≡ perm(0, n− 1, a0, a) ∧ ord(0, n− 1, a),
INV ≡ i ≤ n ∧ n ≤ len(a) ∧ len(a0) = len(a)∧

a0[i : n− 1] = a[i : n− 1] ∧ perm(0, i− 1, a0, a) ∧ ord(0, i− 1, a),

where perm(i, j, a0, a) means that array a is the permutation of array a0 from
i-th to j-th element, ord(i, j, a) denotes that array a is ordered from i-th to
j-th element. Note that Galeotti et al. [5] did not prove the permutation, and
Srivastava et al. [15] used weaker property ∀i∃j (0 ≤ i < n) ⇒ (0 ≤ j <
n ∧ a0[i] = a[j]).

Applying rules of the mixed axiomatic semantics [1] we obtain three verifi-
cation conditions: the condition of loop entry, the condition of loop exit and the
condition of iteration continuation.

The first and the second verification conditions were proved in ACL2 auto-
matically. Consider the third verification condition, which is the most difficult.
It has the following form:

i < n ∧ INV ⇒ ((((INV (i ← i+ 1))(a ← update-nth(j + 1, k, a)))
(j ← rep(i, envir-init(i, k), frame-init(i− 1, a)).j,

a ← rep(i, envir-init(i, k), frame-init(i− 1, a)).a))(k ← a[i])),

Due to the symbolic method of definite iteration verification, we do not need
to provide an invariant for inner loop. This verification condition can be found

166

Towards Automatic Deductive Verification of C Prog. Over Linear Arrays 5

in [17] (in the syntax of ACL2). It was automatically generated and named vc-3

in the file vc-3.lisp. To prove this verification condition the strategies from
section 5 were applied.

5 Method of Automation of Verification Conditions
Proving

During this research, four strategies of verification conditions proving were de-
veloped. They are based on the automatic generation of lemmas. Their proof
can help to prove the verification condition. Automatically generated formulas
can be not theorems, therefore only successful proving of them in ACL2 allows
adding them into the underlying theory. In ACL2, such formulas can be given to
the user for proving them in interactive mode or can be proved automatically.
We will give here key lemmas, which were added to the underlying theory in our
example. These lemmas allowed ACL2 to prove the verification condition.

Let us introduce common notions for all strategies. Each of them gets a finite
downward iteration over array a. We will define strategies using notions from
section 3.

Let us consider the verification condition of a form (X1 ∧X2 ∧ . . . ∧Xw) ⇒
(C1 ∧C2 ∧ . . .∧Cm), where X1, X2, . . ., Xw are hypotheses and C1, C2, . . ., Cm

are goals. If the verification is not of that form, let us bring it to such form. We
will consider each goal separately: (X1 ∧X2 ∧ . . .∧Xw) ⇒ Ci, where 1 ≤ i ≤ m.
Let Y = {C1, C2, . . ., Cm}.

Let us make a correspondence between parameters of strategies and our finite
iteration with its continuation condition from our example. In our case, the
parameter a stands for array a, parameter n stands for variable i, parameter i
stands for variable j. Parameter T ≡ INV ∧ (i < n). Let a[i : j] be a subarray
of array a from i-th to j-th element inclusively.

5.1 The Strategy of Premises Choice

The condition of the applicability of this strategy is the form of considered finite
iteration (with possible loop exit). This strategy is applied, if during verification
condition proving, we try to prove a statement about the property of rep. Let
R be such a statement. Thereby, the first argument of our strategy is the finite
iteration, the second one is the definition of rep, the third argument is R.

The strategy is oriented to solving a problem of transformation of R to
lemma, which has the form of implication. R becomes the conclusion of such
implication. Therefore, the problem is reduced to a generation of the premise,
which should allow to prove the lemma and the verification condition.

To overcome this difficulty we use more generalized statements as premises
than T . For example, the statement L1 ≡ (iteration ∈ N) ∧ (iteration ≤
env.upper-bound)∧(env.upper-bound < (len(fr.a)))∧(fr.j = (env.upper-bound
−1)) or the statement L2 ≡ (env.upper-bound ∈ N) ∧ (env.upper-bound <
(len(fr.a))) ∧ (fr.j = (env.upper-bound− 1)) ∧ ¬fr.loop-break.

167

6 D. Kondratyev et al.

We plan to extend the set of premises. The choice is determined by one, which
helps ACL2 to prove the lemma. For each L ∈ {L1, L2}, we try to prove formula
lm ≡ L ⇒ P in ACL2. All such lemmas start with the prefix rep-lemma- in
[17].

Let us generate auxiliary formula lm′ in a form of implication. Its premise
is T and its conclusion is constructed from R by replacing n, env, and fr by
iteration parameters. Let us substitute the iteration parameters into lm to prove
lm′. Because of the same premises, it is more convenient to use lm′ for verifi-
cation condition proving. In [17] the names of all such lemmas start with prefix
vc-3-lemma-.

For example, consider the statement about equality of two subarrays as R ≡
a[0 : rep(iteration, env, fr).j] = (rep(iteration, env, fr).a)[0 : rep(iteration,
env, fr).j]. Applying our strategy to R, we add a lemma L1 ⇒ P to the under-
lying theory, which can be found in [17] under the name rep-lemma-76.

5.2 The Strategy for Finite Iteration Over Changeable Array

The condition of the applicability of this strategy is the form of considered
finite iteration and the presence of assignment statement a[expr-index] =

expr-value; in a loop body. Let an iteration consists of w assignment state-
ments. With the help of the function c kernel translator, we will translate each
expression expr-indexi to the expression expr-indi of ACL2 language for each
i: 1 ≤ i ≤ w.

Let us generate and try to prove by the strategy from 5.1 the following
statement: (index �= expr-ind1) ∧ . . . ∧ (index �= expr-indw) ⇒ rep(iteration−
1, env, fr).a[index] = rep(iteration, env, fr).a[index]. In case of a successful
proof of such formula, the corresponding lemma is added to the underlying the-
ory. It states, that an array element, whose index is not in the set of indices of
left operands of assignment statements, is not changed at the next iteration.

Consider the application of this strategy to our example. Note that the loop
contains the assignment statement a[j + 1] = a[j];. Since the value of loop
counter is env.upper-bound − iteration, the generated lemma rep-lemma-22

[17] has the following form: L1∧ (index �= (env.upper-bound− iteration)+1) ⇒
rep(iteration− 1, env, fr).a[index] = rep(iteration, env, fr). a[index].

5.3 The Strategy for Finite Iteration With break Statement

The condition of the applicability of this strategy is the form of considered
finite iteration and the presence of break statement. Let break-condition be
a conjunction of controlling expressions of the if statements on the path to
break statement (we make all necessary substitutions in case of assignment
statements). In fact, break-condition is a function br-cond(iteration, env, fr).

The value of the field loop-break of the structure frame is the detector
for certain iteration, whether break statement occurred earlier. Note that the
number of iteration, which led to loop exit, is br-iter = env.upper-bound −

168

Towards Automatic Deductive Verification of C Prog. Over Linear Arrays 7

rep(env.upper-bound, env, fr).i. This strategy attempts to prove a set of auxil-
iary lemmas about the execution of break statement:

1. If rep(iteration, env, fr).loop-break then rep(iteration, env, fr).i = rep(
iteration− 1, env, fr).i.

2. If ¬rep(iteration, env, fr).loop-break then rep(iteration, env, fr).i = env.
upper-bound− iteration− 1.

3. If rep(iter, env, fr).loop-break and iter ≤ iteration then rep(iteration,
env, fr).loop-break.

4. If rep(iter, env, fr).loop-break and iter ≤ iteration then rep(iter, env, fr)
= rep(iteration, env, fr).

5. If ¬rep(iteration, env, fr).loop-break and iter ≤ iteration then ¬rep(iter,
env, fr).loop-break.

6. ¬(br-iter − 1, fr, env).loop-break and rep(br-iter − 1, fr, env).loop-break.
7. If iter ∈ [br-iter : env.upper-bound] then rep(env, iter, fr).loop-break.
8. If iteration ∈ [0 : br-iter − 1] then ¬rep(iteration, env, fr).loop-break.
9. If iteration ∈ [0 : br-iter − 1] then ¬br-cond(iteration, env, fr).
10. iteration ∈ [br-iter : env.upper-bound] ⇒ br-cond(iteration, env, fr).
11. ¬br-cond(br-iter − 1, env, fr) and br-cond(br-iter, env, fr).
These statements are based on the fact, that the property “whether a loop

exit occurred” is monotonic against the number of iteration. These statements
are handled by a strategy described in 5.1.

Consider the application of this strategy to our example. As the loop contains
break statement the break-condition is (a[rep(iteration−1, env, fr).j]) ≤ env.k.
In our case the statement 11 has the form: a[rep(br-iter− 1, env, fr).j] > env.k
and a[rep(br-iter, env, fr).j, env, fr)] ≤ env.k. Using obtained by the strategy
statements 1 and 2 we have the equivalent break-condition: a[rep(env.upper-
bound, env, fr).j + 2] > env.k and a[rep(env.upper-bound, env, fr).j] ≤ env.k.
By the strategy from 5.1 these statements are transformed to lemmas [17] rep-
lemma-83: L2 ⇒ env.k < a[rep(env.upper-bound, env, fr).j+2] and rep-lemma-

108: L2 ⇒ a[rep(env.upper-bound, env, fr).j] ≤ env.k.

5.4 The Strategy for Functions With Concatenation Property

The condition of the applicability of this strategy is the form of considered
finite iteration (with possible loop exit) and the presence of predicates satisfying
concatenation or concatenation with a splice at bounds property.

The predicate V has the concatenation property if (V (i, k, u, . . .)∧ V (k, j, u,
. . .)∧ (i ≤ k)∧ (k < j)) ⇒ V (i, j, u, . . .). The predicate V has the concatenation
with the splice at bounds property if (V (i, k, u, . . .)∧V (k, j, u, . . .)∧(i ≤ k)∧(k <
j) ∧ f(u[k], u[k + 1])) ⇒ V (i, j, u, . . .).

These property patterns are used in check whether this strategy is applicable.
To do this, loop and post-condition analysis are performed. For all predicates
in post-condition, we search theorems satisfying given property patterns in all
used theories.

Loop analysis allows ascertaining whether the loop corresponds to the form
of considering finite iteration. Thus, the first argument of our strategy is finite

169

8 D. Kondratyev et al.

iteration, the second argument is the definition of rep, the third one is the
verification condition. The strategy starts at an analysis of the elements of the
set Y .

Let Z be a set of goals from Y , which are the applications of a predicate
satisfying concatenation or concatenation with a splice at bounds property: Z ⊂
Y . For each goal φ ∈ Z the following steps are performed:

1. Let φ ≡ U(. . .). Consider splits of arrays a and rep(n, env, fr).a. Let us
apply the strategy from 5.1 to a[0 : rep(n, env, fr).i] = (rep(n, env, fr).a)[0 :
rep(n, env, fr).i]. The segment [0 : rep(n, env, fr).i] is not covered by iteration,
therefore, we can suppose that it is not modified by rep. If the lemma was
added to the underlying theory we try to prove T ∧ U(0, rep(n, env, fr).i) ⇒
U(0, rep(n, env, fr).i, rep(n, env, fr).a, . . .). In case of successful proof, we add
this formula to the underlying theory.

2. In case of presence of statements a[i + expr] = a[i];, where expr is
a C-light expression, the hypothesis about array shift arises. With the help
of c kernel translator from [8] we obtain expression, which is expr in ACL2
language. We apply a strategy from 5.1 to a[(rep(n, env, fr).i + 1) : (n −
expression)] = (rep(n, env, fr).a)[(rep(n, env, fr).i + 1 + expression) : n].
Thereby, after loop exit we check the coincidence of initial subarray and shifted
by rep one. If the lemma was added to the underlying theory, we try to prove
T ∧ U(rep(n, env, fr).i + 1, n − expression, a, . . .) ⇒ U(rep(n, env, fr).i + 1 +
expression, n, rep(n, env, fr). a, . . .). In case of successful proof, we add this
formula to the underlying theory.

3. If predicate U satisfies the property of concatenation with a splice at
bounds by condition f , then we apply the strategy from 5.3. Note that break-
condition can contain f and depends on br-iter defined in 5.3. If we proved the
formula obtained from the statement 11 of the subsection 5.3, then such lemma
can help to prove the range splice. We try to prove T∧¬br-cond(br-iter, env, fr)∧
br-cond(br-iter, env, fr) ⇒ f((rep(n, env, fr).a)[rep(n, env, fr).i], (rep(n, env,
fr).a)[rep(n, env, fr).i+ 1]).

This lemma states about the range splice between rep(n, env, fr).i and rep(n,
env, fr).i+ 1, i. e. in the point of loop exit. In case of successful proof, we add
this formula to the underlying theory.

For statements of the form a[i + expr] = a[i]; we generate and check
the formula about range splice of rep(n, env, fr).i+ expression and rep(n, env,
fr).i+ expression+ 1).

4. Apply added to the underlying theory lemmas to prove T ⇒ φ.

Let us apply this strategy to our example. After post-condition analysis,
the theorems permutation-7 and ordered-3 were detected in the underlying
theory. Since permutation-7 satisfies the pattern, the predicate perm satisfies
concatenation property. The theorem ordered-3 satisfies the pattern with a
splice at bounds, where ≤ is used as a relation f . Therefore, the predicate ord
satisfies the concatenation property with a splice at bounds with respect to ≤.

Consider lemmas appeared at proving two goals. Let A be the goal con-
taining predicate perm. Let B be the goal containing predicate ord. Thus,

170

Towards Automatic Deductive Verification of C Prog. Over Linear Arrays 9

A,B ∈ Z. Then, let G ≡ T ⇒ A and let H ≡ T ⇒ B. Let e = update-
nth(rep(i, env, fr).j + 1, k, rep(i, env, fr).a).

Consider first the application of strategy steps to formula A. The application
of strategy to a[0 : rep(n, env, fr).j] = (rep(i, env, fr).a)[0 : rep(i, env, fr).j]
is described in 5.1. After that, the permutation of a and e in the range [0 :
rep(i, env, fr).j] was proved.

During analysis, the statement a[j + 1] = a[j]; was detected, which is
a potential array shift. Thus, the constant 1 corresponds to expression. With
the help of rep-lemma-22 and the strategy from 5.1, rep-lemma-55 was ob-
tained from a[rep(i, env, fr).j + 1 : i− 1] = (rep(i, env, fr).a[rep(i, env, fr).j +
2 : i]. It allowed to prove permutation of a[rep(i, env, fr).j + 1 : i − 1] and
e[rep(i, env, fr).j + 2 : i].

The statement e[rep(i, env, fr).j + 1 : rep(i, env, fr).j + 1] = a[i : i] was
proved automatically. It allowed to prove the permutation of a[i : i] and e[rep(i,
env, fr).j + 1 : rep(i, env, fr).j + 1]. As permutation satisfies concatenation
property, the permutation of a and e in the range [rep(i, env, fr).j + 1 : i] was
proved. Finally, using concatenation property we get permutation of a and e in
the range [0 : i].

Consider the application of strategy steps to formula B. The predicate ord
satisfies the property of concatenation with a splice at bounds, so it is necessary
to check that the relation ≤ holds at bounds. This property was successfully
checked in 5.3.

All mentioned lemmas and the full proof can be found in [17].

6 Conclusion

This paper represents the method for the automation of the C-light program
verification. In case of definite iteration over changeable arrays with loop exit,
this method allows generating verification conditions without loop invariants.

This generation is based on the new inference rule for the C-light for state-
ment which uses the replacement operation. It is generated automatically by
the special algorithm [8], which translates loop body statements to ACL2 con-
structs. In this paper, we described changes to this algorithm, which extends the
application of our method to downward iterations.

To prove obtained verification conditions, we apply special strategies based
on lemmas generation. The successful proving of such lemmas can help to prove
the verification conditions. We developed four strategies. Their application was
illustrated by the verification of insertion sort program. They supplement the
symbolic method of finite iterations and allow automatizing the process of de-
ductive verification.

Also, the verification of the functions implementing BLAS interface [3] is
an important problem. Earlier we performed such experiments successfully [7].
Our methods allowed us to verify the function asum, which implements the
corresponding function from BLAS interface: it calculates the sum of absolute
values of a vector.

171

10 D. Kondratyev et al.

References

1. Anureev, I. S., Maryasov, I. V., Nepomniaschy, V. A.: C-programs Verification Based
on Mixed Axiomatic Semantics. Automatic Control and Computer Sciences 45(7),
485–500 (2011)

2. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moska�l, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009, LNCS, vol.
5674, pp. 23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03359-9 2

3. Dongarra, J. J., van der Steen, A. J.: High-performance Computing Systems: Status
and Outlook. Acta Numerica 21, 379–474 (2012)

4. Filliâtre, J.-C., Marché, C.: Multi-prover Verification of C Programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004, LNCS, vol 3308, pp. 15–29. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30482-1 10

5. Galeotti, J. P., Furia, C. A., May, E., Fraser, G., Zeller, A.: Inferring Loop Invari-
ants by Mutation, Dynamic Analysis, and Static Checking. IEEE Transactions on
Software Engineering 41(10), 1019–1037 (2015)

6. Kaufmann, M., Moore, J. S.: An Industrial Strength Theorem Prover for a Logic
Based on Common Lisp. IEEE Transactions on Software Engineering 23(4), 203–213
(1997)

7. Kondratyev, D.: Implementing the Symbolic Method of Verification in the C-Light
Project. In: Petrenko, A., Voronkov, A. (eds.) PSI 2017, LNCS, vol. 10742, pp.
227–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 17

8. Kondratyev, D. A., Maryasov, I. V., Nepomniaschy, V. A.: The Automation of C
Program Verification by Symbolic Method of Loop Invariants Elimination. Modeling
and Analysis of Information Systems, 25(5), 491–505 (2018) (In Russian)

9. Kovács, L.: Symbolic Computation and Automated Reasoning for Program Anal-
ysis. In: Abraham, E., Huisman, M. (eds.) IFM 2016, LNCS, vol. 9681, pp. 20–27.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 2

10. Li, J., Sun, J., Li, L., Le, Q. L., Lin, S.-W.: Automatic Loop Invariant Generation
and Refinement through Selective Sampling. In: Proceedings on ASE 2017, pp. 782–
792. Conference Publishing Consulting, Passau (2017).

11. Maryasov, I. V., Nepomniaschy, V. A.: Loop Invariants Elimination for Definite It-
erations Over Unchangeable Data Structures in C Programs. Modeling and Analysis
of Information Systems, 22(6), 773–782 (2015)

12. Maryasov, I. V., Nepomniaschy, V. A., Kondratyev, D. A.: Invariant Elimination of
Definite Iterations Over Arrays in C Programs Verification. Modeling and Analysis
of Information Systems, 24(6), 743–754 (2017)

13. Maryasov, I. V., Nepomniaschy, V. A., Promsky, A. V., Kondratyev, D. A.: Au-
tomatic C Program Verification Based on Mixed Axiomatic Semantics. Automatic
Control and Computer Sciences, 48(7), 407–414 (2014)

14. Nepomniaschy, V. A.: Symbolic Method of Verification of Definite Iterations Over
Altered Data Structures. Programming and Computer Software, 31(1), 1–9 (2005)

15. Srivastava, S., Gulwani, S., Foster, J. S.: Template-based Program Verification
and Program Synthesis. International Journal on Software Tools for Technology
Transfer, 15(5-6), 497–518 (2012)

16. Tuerk, T.: Local Reasoning About While-loops. In: Theory Workshop Proceedings
on VSTTE 2010, pp. 29–39. Heriot-Watt University, Edinburgh (2010)

17. Verification of Insertion Sorting Program,
https://bitbucket.org/Kondratyev/sorting. Last accessed 26 Apr 2019

172

Automated Sisal program verification with
ACL2�

Dmitry Kondratyev and Alexei Promsky

A.P. Ershov Institute of Informatics Systems, 630090, Novosibirsk, Russia
apple-66@mail.ru, promsky@iis.nsk.su

Abstract. The Sisal programming environment which is being devel-
oped in IIS also includes a verification module. The previously developed
C-light verification system serves as its base, since the C language rep-
resentations of Sisal programs are actually processed. The preservation
of equivalence during translation provides correctness of this two-stage
verification. At the moment we concentrate our efforts on verification of
Sisal loop expressions which are translated into the C for-loops. Try-
ing to avoid the well-known problem of the loop invariants we apply a
symbolic method of definite iterations. This technique expresses the loop
effect in symbolic form. However, the Sisal loop expressions sometimes
lead to peculiar C loops. The symbolic forms of such loops in verification
conditions are too complex to be proved automatically. In this paper
we represent a proof strategy for such formulas. Our strategy introduces
logical formula transformations which, in general, do not maintain equiv-
alence. However, the truth of resulting formula guarantees truth of the
original one. We also describe here a verification example.

Keywords: automated theorem proof · C-light · Sisal · deductive veri-
fication.

1 Introduction

Programming environment for the Sisal language [11, 14] is one of the urgent
projects in IIS. It aims mainly at efficiency, so the input program is translated
into an intermediate form which, in turn, can be aggressively optimized [13]. In
addition, intermediate form can be translated into the C language[9, 12].

A more recent feature of the project relates to deductive program verification
[1], which traditionally rests on axiomatic semantics and generation of verifica-
tion conditions. However, at the moment we do not have a Hoare’s logics for
Sisal. And this is where translation into the C comes in handy. Another actual
project of IIS is the C-light verification system. Despite its name, the C-light is a
quite representative subset of the Standard C with a full operational semantics.
This project also involves a two-stage scheme, thus introducing a special core, the
C-kernel language, which possesses a sound axiomatic semantics. Details can be

� This research is being supported by grant No. 18-11-00118 from Russian Science
Foundation.

173

2 Dmitry Kondratyev and Alexei Promsky

found in [23, 25]. Trying to mechanize the verification proofs we experiment with
popular tools. In this paper we address the interactive theorem prover ACL2[15].

Among the traditional woes of deductive verification, loop invariants begin
to play a crucial role here. Originally, loop invariants together with pre- and
postconditions are provided by user prior to verification process [1]. But the
loop expressions of Sisal are translated on the fly into the C for-loops, thus
requiring automatic generation of appropriate invariants. This is a very complex
task, though some successes were demonstrated by researchers [28, 20]. To avoid
it we actually apply to the third actively developing project of our institute. The
symbolic method of verification of definite iterations over altered data structures
introduces a special replacement operation rep[24, 16]. As the name suggests the
idea is to represent the loop action in some symbolic form.

The recursive nature of rep requires induction over iteration numbers. Our
initial attempts to validate such induction in ACL2 were unsuccessful. So we
need to develop automatic proof strategies. Some of them were invented in ad-
jacent experiments. For example, a strategy from [22] defines lemmas satisfying
certain restrictions which, in turn, depend on verification condition structure.
Unfortunately, that strategy is only interactive. In this paper we represent a
more recent strategy which allows a fully automated proof in ACL2.

Related work. The attempts to develop an efficient Sisal compiler are well-known.
For example, the paper [4] describes Optimizing Sisal Compiler (OSC) which also
produces the C code.

The intermediate languages in program verification have become a standard
de facto nowadays [29, 18]. Among the most popular languages we can note
Boogie [19] and WhyML [8]. The first one is used in such systems as AutoProof
[27], HAVOC[2], VCC [5], Spec# [3]. The latter (together with language Jessie
[21]) serves as a base in Caduceus [6], Jessie [21], Krakatoa [7].

The system ACL2(ml) [10] bases its proof strategies on combination of two
methods. The first one uses statistical machine learning to recognize proof pat-
terns. The second one is a symbolic finding of analogous lemma. However, the
specific domain theories may vary drastically depending on programs. Thus,
machine learning methods are not ideal for verification condition proofs.

The rest of this paper is organized as follows. Section 2 provides some prelim-
inary information over symbolic verification method (Subsection 2.1), the Sisal
language and ACL2 (2.2), as well as a program example (2.3). A new proof stra-
tegy for loops emerging due to Sisal loop expressions is represented in Section
3. An application of this strategy to our example forms the Section 4. Section 5
concludes.

2 Preliminary information

The paper volume does not provide enough space for detailed notations. Reader
can find an extended version of the paper in our on-line repository [17].

174

Automated Sisal program verification with ACL2 3

2.1 Symbolic method of verification of definite iterations

The general representation of definite iteration over data structure takes the
following form:

for x in S do v := body(v,x) end

Here S is a data structure, x is variable of type element of S, v is a tuple of loop
variables (excluding x) and body represents calculations within the loop which
do not alter x. The loop body only allows assignments, if statements (including
nested ones) and break statements. We denote the tuple of all elements of S
as vec(S). Suppose that vec(S) = [s1, s2, . . . , sn]. Then the loop body consec-
utively iterates in such manner that x equates to s1, s2, . . . , sn and body(v, sj)
can modify s1, s2, . . . , sj−1.

The main advantage of this approach reveals itself when it comes to the proof
of Hoare triples. Not only it does not require some loop invariant, but also it
does not split the proof tree. It simply introduces a linear replacement operation
rep(v, s, body) which expresses the value of v after iteration:

{P}A;{Q(v ← rep(v, S, body))}
{P}A; for x in S do v := body(v,x) end{Q}

Here A is a context (i.e. all statements preceding iteration), ← denotes substi-
tution for all free occurrences, P and Q are pre- and postcondition respectively.

Since the C is our intermediate language, we can consider a special case if
definite iterations in the corresponding syntax. Given S is an array of length n
and S ∈ v, it looks like

for (i = 0; i < n; i++) v := body(v, i) end,

where v := body(v, i) consists of assignments, if statements and break state-
ments. Only expressions without side-effects are allowed at right hand sides of
assignments and in conditions of ifs.

Thus, v is a tuple of all objects that can be altered in loop body. Suppose v0
is a value of v before the loop and vi denotes the value of v after ith iteration.
Then vi = body(vi−1, si) for i = 1, ..., n.

Now we define the replacement operation. Let rep(0, v0) = v0 and rep(i, v0) =
body(rep(i−1, v0), si). Thus, the main property of this operation is rep(i, v0) =
vi. The recursive definition of rep is built automatically by analysis of body [22].

If break was executed during iteration j (0 < j ≤ n) we model it as if
iterations still go on, but the value of v does not change. I.e. for all k such that
j ≤ k ≤ n rep(j, v0) = rep(k, v0).

So the corresponding proof rule takes the form

{P}A;{Q(v ← rep(n, v0))}
{P}A; for (i = 0; i < n; i++) v := body(v, i) end{Q}

Since the replacement operation returns vector v of length m, it may be appro-
priate to define m atomic replacement operations.

175

4 Dmitry Kondratyev and Alexei Promsky

2.2 The Sisal language and ACL2

Let us limit ourselves to survey of those parts of languages which are necessary
to understand the remaining sections. Both Sisal and ACL2 follow the functional
programming style allowing to avoid side-effects. But their purpose differs, Sisal
aims at efficient calculations, whereas ACL2 is suitable to define logical theories.

The data structure handling in Sisal is based on loop expressions [11]. Their
form serves the automatic vectorization in some cases. The loop expression com-
bines three parts: loop control, loop body and returns clause. The heading loop
control (denoted by keyword for) declares variables and their ranges during
iterations. Loop body consists of expressions modifying loop variables. The op-
erator old takes a variable name as an argument and returns its value from the
previous iteration. The control expressions (the keyword while) can also take
place. The falsity of such expression results in abrupt termination. The returns
clause is a list of reductions. Every loop variable is associated with a reducible
sequence of values corresponding to iterations. Reductions allow us to apply cer-
tain operations to those sequences. For example, reduction value produced the
last value of a reducible sequence. This list of reduction itself is a value of whole
loop.

On the contrary ACL2 prefers recursion to manipulate data structures. Since
technically ACL2 is a CLisp library it uses the standard defun for function
definitions. Within function definition a user can introduce construction declare

which, in turn, can contain sections xargs and measure. As long as we try to
conduct some inductive proofs in ACL2 these sections can be useful, especially
when termination of recursive function is under concern.

The type checks in our examples will use special predicates. For instance,
integerp tests whether its argument is an integer, zpmatch its argument against
zero and integer-listp is satisfiable only by lists of integers.

We use lists to model Sisal arrays as well as intermediate C arrays. The func-
tion nth accesses list elements while length returns the number of list elements.

The logical connectives in ACL2 are denoted by obvious not, and, or and
implies. The statement defthm serves as theorem definition. It can contain spe-
cial sections. For example, section hints introduces “directions” which ACL2
should follow during proof. Such recommendations can be defined for every for-
mula that contributes to the theorem proof. These formulas are called ”goals”
and the theorem itself is a goal (denoted by keyword "Goal"). Finally, the hint
induct advises ACL2 to apply an induction scheme when it tries to satisfy a
goal.

2.3 Study case

Consider the following Sisal program counting occurrences of some key in array:

function search_count (a: array of integer,

n, entr key: integer returns integer)

for cnt := 0, result := 0; i in 1..n

176

Automated Sisal program verification with ACL2 5

while !(cnt = entr) do

cnt := if a[i]=key then old cnt + 1;

result := if cnt=entr then 1;

returns value of result

end for

end function

Its precondition (ACL2 syntax) looks like

(and (integer-listp a)

(integerp n)

(integerp key)

(< 0 n)

(<= n (length a))

)

whereas its postcondition is

(and (implies (=> entr (cnt 0 (- n 1) key a))

(equal result 1)

)

(implies (< entr (cnt 0 (- n 1) key a))

(equal result 0)

)

)

The logical function cnt computes the number of elements equal to key in
the sublist from the i-th up to the j-th element. The complete definition of cnt
can be found in repository [17].

The translation stage leads to the following C program:

int search_count(int* arr, int length, int key, int entr)

{

auto int result = 0, cnt = 0, i;

for (i = 0; i < length; i++)

{

if (key == arr[i]) cnt++;

if (cnt == entr) {result = 1; break;}

}

return result;

}

A traditional verification condition (VC) generator would produce five VCs
due to one loop and two if statements. On the contrary, our VCG uses the
symbolic method deriving single (though complex) VC. Its complete definition
in ACL2 can also be found in [17]. In the rest of the paper we apply to a simplified
scheme of VC.

As we mentioned above, the symbolic method introduces logical functions
representing substitution operation for the mutable objects within loop body

177

6 Dmitry Kondratyev and Alexei Promsky

[22]. For the program under discussion function rep1 symbolically reflects changes
of variable cnt on each iteration:

(defun rep1(i key entr a)

(if

(zp i)

0

(if

(= entr (rep1 (- i 1) key entr a))

(rep1 (- i 1) key entr a)

(if

(= key (nth (- i 1) a))

(+ 1 (rep1 (- i 1) key entr a))

(rep1 (- i 1) key entr a)

)

)

)

)

while rep2 embodies the effect of assignments to result:

(defun rep2(i key entr a)

(if

(zp i)

0

(if

(= entr (rep1 i key entr a))

1

(rep2 (- i 1) key entr a)

)

)

)

The replacement operation is always defined by recursion on the first argu-
ment which corresponds to the iteration number. So, VCs containing replacement
operation require induction. In our experiments we use induction on the data
structure length.

However, ACL2 fails to prove such VC when it uses solely induction on n. This
answer of ACL2 was analyzed automatically resulting in automatic application
of the proof strategy from the following Section.

3 The proof strategy

Now, let us see what hints can be given to ACL2 in order to achieve the goal.
The method we describe here can be used in ACL2 to automatically prove VCs
inherent in programs that deal with definite iterations.

178

Automated Sisal program verification with ACL2 7

The idea is as follows: for a given VC φ we construct a logically stronger
formula θ (though inequivalent in general case). Since θ → φ by construction, it
is enough to validate θ. Some considerations must be taken into account before
we start. First, by construction a typical VC φ is a propositional combination
of equality/inequality terms. Apart from functions of a domain theory, VCs
contain special functions repi mentioned above. Each repi corresponds to its
own program variable that can be altered during loop execution. The length of a
processed sub-array plays an important role here because it serves as induction
variable. The initial values of program variables and loop exit conditions also
can be used in definitions if repi.

The VC proof algorithm itself is based on a stepwise transformation of for-
mula φ. Every local rewriting gives a stronger (perhaps nonequivalent) formula.
When we have a choice, we prefer rewritings allowing to avoid problems in ACL2.
For example, an in-line substitution of a non-recursive function body takes place
instead of its invocation.

The arguments of algorithm are formula φ, the sub-array length n, functions
repi (let k be their quantity), an underlying theory, initial values of program vari-
ables (at loop entry point) and loop exit condition. Underlying theory includes
definitions of functions whose calls are sub-formulas in φ as well as theorems
about these functions.

The result of this algorithm can be ”formula φ is valid” if ACL2 has succeeded
in proof of a stronger formula θ or ”unknown” otherwise.

Our algorithm consists of the following six steps:

1. Formula φ is being converted into equivalent clause conjunction.
2. For every clause we construct a graph of relations between variables and

functional calls in the clause premise. So, variables and function calls are the
nodes. As long as clause premise is a conjunction of hypotheses we analyze
them to establish edges. Namely, the nodes a and b are joined by the edge
(a, b) with a label R where R ∈ {=, �=, <,>,≤,≥} iff either a or b is variable
and hypothesis R(a, b) exists in clause premise.
For every clause, for every variable v and for every relation R ∈ {=, �=, <
,>,≤,≥} we define a special procedure which searches for the (nearest or
corresponding) function call and a list of hypotheses validating that call. The
searching procedure takes the relation graph G of considered clause, variable
v and relation R as its arguments. The returned value can either be message
”corresponding function call not found” or a function call accompanied by
hypotheses list. Depending on relation R this procedure can be defined as
follows:
(a) if R is ”=”, then let F be a set of nodes in G which are reachable from

v by transitive closure =∗;
(b) if R is ≤, then let F be a set of nodes reachable from v by (= ∪ < ∪ ≤)

∗

(i.e. we traverse all edges labeled by either = or < or ≤);
(c) if R is ≥ then F combines all nodes reachable from v by (= ∪ > ∪ ≥)

∗
;

(d) if R is < then F is a set of all nodes reachable from v by relation

(= ∪ < ∪ ≤)
∗ ◦ (<) ◦ (= ∪ < ∪ ≤)

∗

179

8 Dmitry Kondratyev and Alexei Promsky

(we traverse all edges labeled by =, < or ≤ and one of them must be
labeled by <);

(e) if R is > then let F be a set of nodes reachable from v by (= ∪ > ∪ ≥)
∗◦

(>) ◦ (= ∪ > ∪ ≥)
∗
(by analogy with (e) one of the edges in the path

must be >);
(f) if R is �= we define F as all nodes reachable from v by (=)∗ ◦ (�= ∪ <

∪ >) ◦ (=)∗ (again, there must be an edge labeled by �= or < or >);

Finally, if F contains at least one function call then procedure returns the
nearest one (by amount of used hypotheses) as well as a list of equalities used
along the corresponding path. Otherwise, procedure signals "corresponding
function call not found".
Now that relation graph has been constructed for a clause, we begin to pro-
cess the conclusion of clause. Conclusion is a disjunction of goals, each of
them looks like R(c, d) where R ∈ {=, �=, <,>,≤,≥}, c and d are either con-
stants, variables or function calls. For a given R(c, d) we introduce auxiliary
variables v and w assigning them values of c and d respectively. Another
pair of auxiliary variables q and r is initialized with empty lists. In case
that the first argument c of relation R is a variable, the searching procedure
starts. If search is successful the discovered function call and list conjuncts
are assigned to variables v and q respectively. Next we analyze the second
argument d of relation R. If v is equal to c or R is not ”�=” and d is a variable
then the search procedure looks for corresponding function call:
• if relation R is either ”=” or ”�=” then d and R are passed to the procedure
as its arguments;
• if relation R is either < or ≤ then d and an ”opposite” relation (> or ≥
respectively) are passed to the procedure as its arguments;
• if relation R is either > ≥ then d and an ”opposite” relation (< or ≤
respectively) are passed to the procedure as its arguments.
In case of success the corresponding function call and conjunct list are as-
signed to variables w and r respectively.
If the initial value of either v or w was changed the goal R(c, d) is replaced
by goal (= v w) within conclusion of the clause under consideration. In
the meantime, if R is = the premise of the clause is being stripped of all
hypotheses that occur in at least one of the lists q or r.

3. All repi that admit non-recursive redefinition are submitted to explicit sub-
stitution. It is sufficient to demonstrate that when the loop-exit condition
is false repi is equal to initial value of the corresponding program variable.
For every such function we create a tree representing its body. The inter-
nal nodes of such tree are if statements and leaves are values returned by
function. The left descendant of a statement is its value when condition is
true. The corresponding edge is labeled by condition of the statement. Cor-
respondingly, the right descendant becomes the value when condition does
not hold. The edge is labeled by negation of condition then.

4. For every clause we process its conclusion which in effect is a disjunction of
individual goals. Let g be one of goals while c is an application of a non-
recursive function occurring in g. We replace g by a conjunction of special

180

Automated Sisal program verification with ACL2 9

implications. First, let us consider the set of interim implications. Every
interim implication corresponds to a leaf in function tree. Its premise rep-
resent conjunction of all edge labels on the path from root to that leaf. Its
conclusion is the goal g in which every occurrence of c is replaced by leaf-
value. For every interim implication the replacement procedure substitutes
the actual arguments from invocation of c instead of variables within func-
tion body, thus transforming interim implication into the special one. After
every substitution each conclusion needs to be transformed to fit the clause
form. This step repeats as long as conclusions in clauses contain applications
of non-recursive functions.

5. If the previous steps (1)–(4) resulted in modification of the formula we repeat
them again.

6. Finally, ACL2 is applied to prove the formula by induction. Depending on
its verdict the answer of the whole algorithm is either ”formula φ is valid”
or ”unknown”.

One of the advantages of this algorithm is possibility to fully automate it. We
believe it can be generalized even further to be applied in other theorem provers.
The adaptation for SMT-solvers CVC4 and Z3 is one of our future plans.

4 Application of the proof strategy

Let us consider how the strategy can be applied to verification of our study
case (Sect.2.3). Note that strategy consistes of a sequence of steps (perhaps,
reiterative).

Let A stand for the formula

(and (integerp n)

(integerp key)

(integerp entr)

(integer-listp a)

)

Conjuncts in A state that variables n, key, entr are integers and a is an integer
list.

Let B denote formula

(and (< 0 n)

(<= n (length a))

(< 0 entr)

)

with an obvious meaning.
The formula C of the form

(<= entr (cnt 0 (- n 1) key a))

181

10 Dmitry Kondratyev and Alexei Promsky

states that the number of occurrences of key within subsequence of a in between
indices 0 and n− 1 is not less than entr.

Another abbreviation D stands for

(= (rep2 n key entr a) 1)

meaning that the variable result is equal to 1 just after execution of a loop which
can be modeled by invocation of function rep2 with arguments n, key, entr and
a.

The formula E

(> entr (cnt 0 (- n 1) key a))

obviously is negation of C.
The formula F

(= (rep2 n key entr a) 0)

is a counterpart of D corresponding to unsuccessful search for key during loop
execution.

The formula J

(= entr (rep1 n key entr a))

expresses equality of values of entr and cnt just after execution of the loop.
According to the symbolic verification method this execution is modeled by
invocation of function rep1 with arguments n, key, entr and a.

Finally, the formula K of the form

(zp n)

states that n is an integer greater than zero.
Now we aggregate these formulas into bigger ones. Let L ≡ A ∧ B ∧ C and

M ≡ A ∧ B ∧ E. These formulas do not reflect data structures that are being
handled by algorithm, we only use them for simplicity.

Just before the step (1) of our algorithm the VC φ corresponds to the fol-
lowing pattern:

A ⇒ (B ⇒ ((C ⇒ D) ∧ (E ⇒ F))).

Let us omit the detailed description of results produced by each step (1)–(4).
Reader can address online repository [17] to see the complete proof protocol.
Enough to say that after single iteration of those steps we obtain the formula
φ′:

(L ⇒ (¬K ∨ (0 = 1)))∧
(L ⇒ ((K ∨ ¬J) ∨ (1 = 1)))∧
(L ⇒ ((K ∨ J) ∨ (0 = 1)))∧
(M ⇒ (¬K ∨ (0 = 0)))∧

(M ⇒ ((K ∨ ¬J) ∨ (1 = 0)))∧
(M ⇒ ((K ∨ J) ∨ (0 = 0)))

182

Automated Sisal program verification with ACL2 11

Note that until this very step equivalence to the original φ is being kept.
Since φ has changed we can repeat steps (1)–(4). Namely, the step (2) may

transform the following disjunct of φ′:

S ≡ (M ⇒ ((K ∨ ¬J) ∨ (1 = 0))).

The relation graph has been produced for S. Consider the following component
of the graph:

The label X stands for (cnt 0 (− n 1) key a) whereas Y means entr. Remind
that this graph component is actually formula E.

Which subgoal will lead to modification of φ′? In fact it is ¬J corresponding
to the pattern g(c, d) where g is ” �=”, c is entr and d is (rep1 n key entr a). So,
the searching procedure begins to look for a function call corresponding to the
variable entr. The search begins at node X. During the search a subgraph of the
relation graph emerges. This subgraph is exactly the component demonstrated
above. The expression (cnt 0 (− n 1) key a) is the function call we were looking
for. The conjunct E is the path we need. So, the expression (cnt 0 (− n 1) key a)
must be assigned to variable v, and E becomes the value of q.

As a result we have the new formula

T ≡ (= (cnt 0 (− n 1) key a) (rep1 n key entr a)).

Let Z denote the disjunct S after replacement of the goal ¬J by T :

(M ⇒ ((K ∨ T) ∨ (1 = 0))).

Note that Z �� S but the truth of S follows from the truth of Z. So we may
replace S by Z in φ′ which results in formula φ′′:

(L ⇒ (¬K ∨ (0 = 1)))∧
(L ⇒ ((K ∨ ¬J) ∨ (1 = 1)))∧
(L ⇒ ((K ∨ J) ∨ (0 = 1)))∧
(M ⇒ (¬K ∨ (0 = 0)))∧

(M ⇒ ((K ∨ T) ∨ (1 = 0)))∧
(M ⇒ ((K ∨ J) ∨ (0 = 0)))

And here it is, the result of our strategy. On the step (6) ACL2 is able to
prove φ′′ by induction on n thus validating the original VC φ.

5 Conclusion

In this paper we briefly described a new approach to verification of Sisal pro-
grams iterating over data structures. The approach owes its success to integra-
tion of three different projects. First, question of the Sisal program correctness

183

12 Dmitry Kondratyev and Alexei Promsky

is reduced to correctness of a corresponding C program. Second, our C-light
verification system is able to handle it. Finally, we can facilitate verification of
restricted loop cases by means of a symbolic method.

As a result of such integrating experiments we developed a proof strategy
for loops. This heuristic approach involves such formula rewritings that correct-
ness of resulting formula provides correctness of the original one. However, the
total equivalence may be lost during application of a procedure related to equal-
ity/inequality. The study case in this paper illustrates successful application of
the strategy.

In general case our strategy does not guaranty success, even for a true ver-
ification condition. Perhaps, it will require some revisions based on the main
principle: the truth of resulting formula implies validity of the original one.

Our future experiments will include less artificial study cases. The first goal is
verification of Sisal programs for sorting and linear algebra. Such programs imply
iterations over vectors and matrices, thus making them appropriate objects for
the symbolic verification method. A more distant task consists of developing of
axiomatics semantics for Sisal.

We also keep in mind possibility to use the C language as a mediator for other
languages, besides Sisal. The language of computable predicates P [26] is a good
candidate. This is a functional language aimed to verification. Our colleagues
are already developing a translator into the C language.

Acknowledgment. The authors are grateful to Prof. Nikolay Shilov (Univ.
of Innopolis, Kazan, Russia) for critical analysis of our proof strategy.

References

1. Apt K. R., Olderog E. R. Verification of sequential and concurrent programs. Berlin
etc. Springer, 1991. 450 p.

2. Ball T., Hackett B., Lahiri S. K., Qadeer S., Vanegue J. Towards Scalable Modular
Checking of User-Defined Properties. LNCS, 2010, vol. 6217, pp. 1–24.

3. Barnett M., Leino K. R. M., Schulte W., The Spec# Programming System: An
Overview. LNCS, 2005, vol. 3362, pp. 49-69.

4. Cann D. C. The Optimizing Sisal Compiler. Livermore, CA, 1992. 74 p. (Tech.
Rep. / Lawrence Livermore National Laboratory; UCRL-MA-110080)

5. Cohen E., Dahlweid M., Hillebrand M. A., Leinenbach D., Moskal M., Santen T.,
Schulte W., Tobies S. VCC: A Practical System for Verifying Concurrent C. LNCS,
2009, vol. 5674, pp. 23-42.

6. Filliâtre J. C., Marché C. Multi-prover verification of C programs. LNCS, 2004,
vol. 3308, pp. 15-29.

7. Filliâtre J. C., Marché C. The Why/Krakatoa/Caduceus Platform for Deductive
Program Verification. LNCS, 2007, vol. 4590, pp. 173-177.

8. Filliâtre J. C., Paskevich A. Why3 — Where Programs Meet Provers. LNCS, 2013,
vol. 7792, pp. 125-128.

9. Gluhankov M. P., Dortman P. A., Pavlov A. A., Stasenko A. P. Translat-
ing components of a functional programming system (SFP). Modern prob-
lems of program construction. — Novosibirsk, 2002. — P. 69-87, URL:
https://www.iis.nsk.su/files/articles/sbor kas 09 gluhankov etc.pdf (In Russian)

184

Automated Sisal program verification with ACL2 13

10. Heras J., Komendantskaya E., Johansson M., Maclean E. Proof-Pattern Recogni-
tion and Lemma Discovery in ACL2. LNCS, 2013, vol. 8312. pp. 389–406.

11. Kasyanov V. Sisal 3.2: functional language for scientific parallel programming.
Enterprise Information Systems, 2013, 7(2), pp. 227–236.

12. Kasyanov V., Kasyanova E. A System of Functional Programming for Support-
ing of Cloud Supercomputing. WSEAS Transactions on Information Science and
Applications, 2018, 15(9), pp. 81–90.

13. Kasyanov V. N., Kasyanova E. V. Methods and system of cloud parallel program-
ming. Proceedings of the XIV International Asian School-Seminar on Problems of
Optimizing Complex Systems, Part 1. Almaty, Kazakhstan, 2018. P. 298-307 (In
Russian)

14. Kasyanov V. N., Kasyanova E. V. Programming language Cloud Sisal. Novosi-
birsk, Russia. A. P. Ershov Institute of Informatics Systems, Siberian Branch
of the Russian Academy of Sciences. Preprint N181. 2018. 45 p. URL:
https://www.iis.nsk.su/files/preprints/Preprint-kasyanovy.pdf (In Russian)

15. Kaufmann M., Moore J. S. An Industrial Strength Theorem Prover for a Logic
Based on Common Lisp. IEEE Transactions on Software Engineering, 1997, 23(4),
pp. 203–213.

16. Kondratyev D. Implementing the Symbolic Method of Verification in the C-Light
Project. LNCS, 2018, vol. 10742, pp. 227–240.

17. Kondratyev D. Automated Sisal program verification with ACL2. Appendices.
URL: https://bitbucket.org/Kondratyev/verify-sisal

18. Leino K. R. M. Program proving using intermediate verification languages (IVLs)
like Boogie and Why3. Proceedings of the 2012 ACM conference on High integrity
language technology. N.Y.: Association for Computing Machinery, 2012. pp. 25–26.

19. Leino K. R. M., Rümmer P. A Polymorphic Intermediate Verification Language:
Design and Logical Encoding. Lecture Notes in Computer Science. Berlin: Springer-
Verlag, 2010. Vol. 6015. P. 312-327.

20. Li J., Sun J., Li L., Loc Le Q., Lin S-W. Automatic loop-invariant generation
and refinement through selective sampling. Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, 2017. pp. 782–792.

21. Mandrykin M. U., Khoroshilov A. V. High-level memory model with low-level
pointer cast support for Jessie intermediate language. Programming and Computer
Software, 2015, 41(4), pp. 197–207.

22. Maryasov I. V., Nepomniaschy V. A., Kondratyev D. A. Invariant Elimination of
Definite Iterations over Arrays in C Programs Verification. Modeling and Analysis
of Information Systems, 2017, 24(6), p. 743–754.

23. Maryasov I. V., Nepomniaschy V. A., Promsky A. V., Kondratyev D. A. Automatic
C Program Verification Based on Mixed Axiomatic Semantics. Automatic Control
and Computer Sciences, 2014, 48(7), pp. 407–414.

24. Nepomniaschy V. A. Symbolic Method of Verification of Definite Iterations over
Altered Data Structures. Programming and Computer Software, 2005, 31(1), pp.
1–9.

25. Nepomniaschy V. A., Anureev I. S., Promskii A. V. Towards Verification of C Pro-
grams: Axiomatic Semantics of the C-kernel Languages. Programming and Com-
puter Software, 2003, 29(6), pp. 338–350.

26. Shelekhov V. I., Tumurov E. G. Applying Automata-based Software Engineering
for the Lift Control Program. Programmnaya Ingeneria, 2017, 8(3), pp. 99–111.
URL: http://persons.iis.nsk.su/files/persons/pages/lift1.pdf (In Russian)

185

14 Dmitry Kondratyev and Alexei Promsky

27. Tschannen J., Furia C. A., Nordio M., Meyer B. Verifying Eiffel programs with
Boogie. Proceedings of the First International Workshop on Intermediate Ver-
ification Languages, BOOGIE (2011). Wroclaw, Poland, August 2011, URL:
http://arxiv.org/abs/1106.4700

28. Tuerk T. Local Reasoning about While-Loops. VSTTE 2010 Work-
shop Proceedings, 2010, pp. 29–39. URL: https://www.research-
collection.ethz.ch/bitstream/handle/20.500.11850/68924/eth-5084-01.pdf

29. Ulbrich M. Dynamic Logic for an Intermediate Language: Verification, Interaction
and Refinement. Berlin, epubli GmbH, 2014, 268 p.

186

The Analytical Object Model as a Base of
Heterogeneous Data Integration

Korobko Anna1 and Metus Anna1

Institute of Computational Modeling of the SB RAS, Krasnoyarsk, Russia
lynx@icm.krasn.ru

Abstract. When viewed the issue of analytical integration of hetero-
geneous data without warehouse building the unified model of diverse
data sources has to be suggested. The desired model has to take into
account analytical features of original file formats, to provide a construc-
tion of the integral analytical model and to attend to unlimited user data
queries. This paper proposes the analytical object model in terms of a
formal specification as the unified model and presents mapping of a XSD
schema and a relational database to this model. The model has been ap-
plied to analyze The All-Russia website of procurement that uses XML
and The Local System of procurement that uses relation DB. The model
instances obtained for each format are partly represented in this paper
in the form of JSON.

Keywords: OLAP· integral analytic model· analytical integration of
heterogeneous data· MDA· XML

1 Introduction

One of the most important aspects of the evolution of On-Line Analytical Pro-
cessing (OLAP) is developing theoretical approaches to simultaneous analysis of
heterogeneous data. OLAP tools are extensively used in decision support systems
assisting managers of large companies with advanced analysis and reporting. As
usually, a lot of business information flows from internal sources, that provides
an accumulation of the great amount of operational data [1]. In some sources
[2], the internal data that are owned by the decision maker and can be directly
incorporated into the decisional process are called stationary. Each source is a
special-purpose data store associated with its own data format. Joined inter-
nal sources represent a model for heterogeneous data. However, with significant
growth of the number of open access databases, it becomes possible to involve
external data in decision-making process for extra benefits. Valuable external
data which may be related, for instance, to the market, to competitors, or to
potential customers, are called situational data [3]. Well-informed and effective
decisions often require a tight relationship between stationary and situational
data [2].

Analysis of municipal procurement is the task demanding simultaneous anal-
ysis of heterogeneous data. According to The Federal Law N 44-FZ ”Contract

187

2 Korobko Anna and Metus Anna

system in the procurement of goods, works and services for state and municipal
needs” the Official All-Russia website of procurement (zakupki.gov.ru) has been
developed. It consolidates municipal demands, ongoing purchases and contracts
all over the country. It sends and receives data in XML format according to
system pre-defined XSD schemas. Otherwise, the Local System of procurement
forms municipal demand orders and scheduled plan of purchases. The Local Sys-
tem has a bidirectional link with the All-Russia website of procurement. Also,
the Local System uses Oracle DBMS to store data and metadata. From the re-
gional government perspective the Local System data is an internal data source
and the All-Russia website data is an external one. An analyst, who wants to
trace some purchase from a demand order to a contract, or to analyze some
supplier activity, needs to integrate these heterogeneous data.

Complex analysis of internal and external data together concerns reconciling
(merging) diverse data sources. Often this step is performed by data warehouse
building or integration of separate analysis results while representing. This pro-
cess requires highly qualified analysts to intent and extra time for data actual-
ization and preparation.

We can consider related works from different points of view. Nowadays, the
complex analysis of heterogeneous data is actively discussed by researchers [4–
11]. In speaking about ideology, there are several conceptual foundations for
OLAP technology development which have been suggested by modern leading
researchers. Thus, the concept of self-service Business Intelligence [2, 12] re-
duces the requirements for user skills. On the other hand, the concept of ex-
ploratory OLAP supports ad-hoc arbitrary query execution [1, 13]. The con-
ceptual description of these approaches shows further researches a way forward,
leaving them a wide discretion for realization. From the logical viewpoint, mod-
ern researches unanimously recognize the need for constructing a global (or a
mediated) schema that enables uniform access to the data [14]. The particu-
lar realizations of the approaches are rather different. They fall somewhere on
the spectrum between warehousing and virtual integration [15]. Approaches
to extraction, transformation and loading data to a centralized warehouse are
proposed in [16, 17]. But it requires highly experienced modelers and designers
to compare a wide variety of domain concepts. Standards of heterogeneous data
interchange have been already developed that provide creating an unified format
of data exchange [18]. However, there arent common algorithms for transform-
ing miscellaneous data into this specific standard. As a virtual global schema,
ontology is proposed [14] for information disclosure form integrated data. This
approach isnt aimed for analytical processing notwithstanding its grace and fea-
sibility. The analytical model of data source [19] has been suggested under the
virtual schema approach. Moreover, it allows us to reduce the requirements to
user-analysts skills so that analytical concepts (measures and dimensions) can be
arranged according to their analytical features that mean grouped into the same
request allowed by data consistency. The model serves to view all available data
in a multidimensional form and provides unlimited querying without knowledge
specified about database structure, functional dependencies and SQL. Another

188

The Analytical Object Model as a Base of Heterogeneous Data Integration 3

technology concept of operational analysis of heterogeneous data was suggested
to avoid warehouse building. This technology constructs the integral analytical
model by comparing and integrating of original data sources automatically. This
integral model supports the design and performance of random user data query
straight to an original data store and delineates author vision of implementation
of heterogeneous data analysis.

Analytical integration of heterogeneous data without warehouse building re-
quires the unified model of diverse data sources has to be suggested. The desired
model has to take into account the analytical features of original file formats, to
provide a construction of the integral analytical model and to attend to unlimited
user data queries.

This paper proposes the analytical object model (AOM) as the unified model.
The AOM is a metamodel describing the structure for model instances of original
data sources regardless of its format. Mapping of a XSD schema and a relational
database to this model is presented. Matching of source structure items for model
items in municipal procurement analysis is presented.

2 The formal specification of the analytical object model

Development of the analytical object model accords with the model-driven de-
velopment (MDD) of information systems, based on 4 level modeling [18]. The
highest level (M3) describes a modeling specification and the lowest one (M0)
describes program system data. To develop the analytical object model model-
driven approach allows creating metamodel (M2) for describing the model in-
stance structure of the original data source regardless of its format. During sys-
tem lifecycle this model services to sources metadata store, sources link details
and instances production and maintain order. At the abstract layer the analyti-
cal object model is a base of heterogeneous system integration and unifies data
format particularities.

Furthermore, the analytical object model has to take into account the analyt-
ical features of original file formats to provide a multidimensional form for OLAP.
Consortium OMG specifies open standard Common Warehouse Metamodel to
combine multidimensional modeling and model-driven approach for data ware-
houses. The standard consists of the set of metamodels for data interchange
within the conceptual layer and assumes data moving to a warehouse manually.
Model instances production taking into account implementation requirements
are beyond the standard scope, so it needs to be produced additionally. Au-
tomatical source integration without warehouse building requires the standard
extension by adding analytical object metamodel. Suggested metamodel deter-
minates the unified structure of a source regardless of its format and consists of
analytical classes such as ”AssociationClass”, ”DAttribute”, ”FAttribute” ”Hi-
erarchy”. ”AssociationClass” is a container class for other items. It matches the
source items of a top level. The model has been applied to analyze municipal
procurement. There are XML and relational data formats in this task.

189

4 Korobko Anna and Metus Anna

Fig. 1. A class diagram for the analytical object model for integrating sources.

So, integration of these two sources model instances is produced from XML
Schema Definition and Oracle database. The class diagram of the analytical
object model is shown in Figure 1 using UML.

”AssociationClass” instances are created for each table in relation source
and for each complex type in XSD. Inner simple types and relation table column
relates ”DAttribute” class (descriptive attribute) or ”FAttribute” class (fact at-
tribute) depending on its analytical features and links ”AssociationClass” with
the composite association. ”Hierarchy” class instances describe analytical rela-
tions between source items, it matches foreign keys in a relational data source
and parent-child relations in XSD. Full rules to produce analytical model in-
stances for relation DB and XSD metadata are shown in Table 1.

The unified representation of diverse data sources in the form of the analyt-
ical object model allows producing a single algorithm of multidimensional form
constructing and merging structures of heterogeneous data sources into an in-
tegral analytical model. Like traditional multidimensional approach numerical
data produces measures, descriptive attribute forms dimensions and ”Hierarchy”
instances arrange dimensions hierarchically. Every model class has features to
facilitate both multidimensional modeling and user query support. ”Scheme”
class has the connection properties of physical data sources.

190

The Analytical Object Model as a Base of Heterogeneous Data Integration 5

Table 1: Matching of XSD and relation DB metadata and analytical
object model items

Begin of Table1
Analytical object
model

Relation DB metadata XSD metadata

class AssociationClass a table - a complexType
- a simpleType (enumera-
tion restricted)
- a choice.
*elements with the same
name (type, if exist) and
inner elements relate the
same AssociationClass

+name: String a table name value of a element name
attribute

+descriptions: String
[0..*]

- a table description or a
table name in Russian;

value of a documentation
element

- a description of foreign
keys to this table

+id an auto increment identifier
+altNames: String [0..*] a foreign key name to this

table
value of a complexType
name attribute

+classType: [REGULAR,
ENUM, CHOICE]

REGULAR (fixed value) REGULAR - if an element
type is a complexType;
ENUM - if an element is a
restricted by enumeration
one;
CHOICE - if it is a choice
element.

class DAttribute a column, if it’s of string,
boolean or primary key
types

an element based on a sim-
pleType (String, Boolean
Integer type)

+name: String a column name value of an element name attribute
+descriptions: String
[0..*]

a column description - value of a documentation
element;
- value of a simpleType
name attribute

+type: [BOOLEAN,
DATE, DATETIME,
INTEGER, NUMERIC,
STRING]

system data types

+isPK: Boolean TRUE if the column con-
tains a primary key, other-
wise FALSE

TRUE if an element is re-
quired, otherwise FALSE

191

6 Korobko Anna and Metus Anna

Continuation of Table 1
Analytical object
model

Relation DB metadata XSD metadata

+altName no value value of an simpleType
name attribute if a type of
the element relates the one

+values no value enumeration values for re-
stricted simpleType

+address no value a specified wildcard (@)
- if an element is an at-
tribute, otherwise - no
value

+length a data type length a data type length, ac-
cording to restrictions:
- facets maxLength,
maxExclusive-1, maxIn-
clusive;
- pattern value.
- 0 unrestricted length.

class ”FAttribute” a column, if it’s of decimal
type

an element based on a
simpleType (Double, Dec-
imal)

+name: String a column name value of an element name
attribute

+descriptions: String
[0..*]

a column description - value of a documentation
element;
- value of a simpleType
name attribute

+type system data types NUMERIC fixed for
xs:double, xs:decimal

+isPK FALSE fixed FALSE fixed
+altName no value value of an simpleType

name attribute if a type of
the element relates the one

+address no value a specified wildcard (@)
- if an element is an at-
tribute, otherwise
- no value

+precision count of numbers according to facets to-
talDigits, pattern. other-
wise 0 unrestricted.

+scale count of digits following
the decimal point

according to facets rac-
tionDigits, pattern. other-
wise 0 unrestricted.

192

The Analytical Object Model as a Base of Heterogeneous Data Integration 7

Continuation of Table 1
Analytical object
model

Relation DB metadata XSD metadata

class ”HierarchyAsso-
ciation”

a foreign key parent-child relation

+className a name of the table related
by the foreign key

a name of an inner com-
plexType element

+classID an unique id of the table
related by the foreign key

an unique id of the inner
complexType element re-
lated by the foreign key

+identifiers pairs of foreign key - pri-
mary key

no value

+type: [ONE, UN-
BOUNDED]

ONE - fixed ONE - if maxOccures at-
tribute value of the child
element equals one
UNBOUNDED - if max-
Occures attribute value of
the child element more
than one

Having produced the AOM, an analyst is able to select objects for analysis
regardless of which source owns them. After the objects are selected, the AOM
maintains the query construction process due to preserving structure peculiari-
ties of the data source format.

3 An example of analytical object model instance
producing

According to the approach a program system was developed to produce an in-
stance of an analytical object model for a source to be integrated automatically.
The program system has services specified for XML and relational data format.
Each service is capable to construct AOM for one of the format types and to
send it to a server in the form of JSON. The server is capable to construct a mul-
tidimensional model and subsequently to produce the integral analytical model.
The AOM instance obtained for XSD format when analyzed the All-Russia web-
site of procurement (zakupki.gov.ru) is partly shown in Figure 2 in the form of
JSON.

The ”Hierarchies” elements of ”product” class accord with the relation be-
tween ”Hierarchy” and ”AssociationClass”. Particularly according to this in-
stance a product relates the All-Russian Classifier of Products (OKPD) and the
All-Russia Classifier of Measurement Units (OKEI). The analytical object model
takes into account both XML peculiarities and relational database ones. Another
AOM instance obtained for relation format when analyzed the Local System of
procurement is partly shown in Figure 3 in the form of JSON. This part of the

193

8 Korobko Anna and Metus Anna

Fig. 2. A part of the analytical object model instance for fcsExtegration.xsd

194

The Analytical Object Model as a Base of Heterogeneous Data Integration 9

AOM instance presents the All-Russia Classifier of Measurement Units (OKEI)
and its descriptive attributes.

Fig. 3. A part of the analytical object model instance for the Local System of procure-
ment

The popularity of relational and XML data formats allows involving addi-
tional information concerning the business environment from a large number of
open data sources in the analysis. So, XML format is used by Federal State
Statistics Service for social and macroeconomics statistics [19], by the Central
Bank of Russia for financial market indicators [20], by Federal Tax Service for
open governmental data [21]. Also, a large number of research and academic in-
stitutions across the world create relational databases in various fields of science
and technology, which are available free through web portals [22].

Complete deployment of the program system based on the suggested model
and its successful beta testing on analyzing municipal procurement data verify
the approach. Further developing of the technology of integral analytical mod-
eling concern producing and testing of the algorithm of multidimensional view
forming based on AOM.

4 Conclusion

The analytical object model has been suggested. The model formally describes
the analytical and structural peculiarities of heterogeneous data sources to over-
come their diversity and to allow them to be integrated automatically. Possibility
to include some source to the integral model without warehouse building is pro-
vided with analyzing of analytical features and relations of an original source
format. Retaining a format metadata arrangement contributes to supporting
unlimited user data queries.

195

10 Korobko Anna and Metus Anna

References

1. Ibragimov, D., Hose, K., Pedersen, T.B., Zimnyi, E.: Towards Exploratory OLAP
over Linked Open DataA Case Study. Enabling Real-Time Bus. Intell. 118 (2014).

2. Abell, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazn, J.-N., Naumann, F.,
Pedersen, T., Rizzi, S.B., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion Cubes: to-
wards self-service Business Intelligence. Int. J. Data Warehous. Min. 9, 6688 (2013).

3. Lser, A., Hueske, F., Markl, V.: Situational business intelligence. In: Lecture Notes
in Business Information Processing (2009).

4. Gallinucci, E., Golfarelli, M., Rizzi, S., Abell, A., Romero, O.: Interactive multi-
dimensional modeling of linked data for exploratory OLAP. Inf. Syst. 77, 86104
(2018).

5. Alpar, P., Schulz, M.: Self-Service Business Intelligence. Bus. Inf. Syst. Eng. 58,
151155 (2016).

6. Chen, H., Storey, V.C., Chen, Hsinchun and Chiang, Roger HL and Storey, V.C.:
Business Intelligence and Analytics: From Big Data To Big Impact. Mis Q. 36,
11651188 (2012).

7. Singh, R., Yoon, V.Y., Redmond, R.T.: Integrating Data Mining and On-line Ana-
lytical Processing for Intelligent Decision Systems. J. Decis. Syst. 11, 185204 (2002).

8. Baranovi, M., Kalpi, D., Brki, L.: Application of Semantic and Structural Similarity
for Schema Reuse in Conceptual Database Design. Proc. 6th WSEAS Eur. Comput.
Conf. (ECC 2012). 368373 (2012).

9. Cuzzocrea, A., Bellatreche, L., Song, I.-Y.: Data warehousing and OLAP over big
data: current challenges and future research directions. In: Proceedings of the six-
teenth international workshop on Data warehousing and OLAP - DOLAP 13. pp.
6770 (2013).

10. Pe, J.M., Rafael, B., Aramburu, M.J., Pederson, T.B.: Integrating Data Ware-
houses with Web Data: A Survey. IEEE Trans. Knowl. Data Eng. 20, 940955 (2008).

11. Salem, R., Boussad, O., Darmont, J.: Active XML-based Web data integration.
Inf. Syst. Front. 15, 371398 (2013).

12. Varga, J., Romero, O., Pedersen, T.B., Thomsen, C.: Analytical metadata model-
ing for next generation BI systems. J. Syst. Softw. 144, 240254 (2018).

13. Rizzi, S., Gallinucci, E., Golfarelli, M., Romero, O., Abell, A.: Towards Exploratory
OLAP on Linked Data. In: 24th Italian Symposium on Advanced Database Systems,
SEBD 2016. pp. 8693 (2016).

14. Benedikt, M., Cuenca Grau, B., Kostylev, E. V.: Logical foundations of information
disclosure in ontology-based data integration. Artif. Intell. 262, 5295 (2018).

15. AnHai, D., Alon, H., Zachary, I.: Principles of Data Integration. Elsevier (2012).

16. Lujn-Mora, S., Vassiliadis, P., Trujillo, J., Lujan-Mora, S., Vassiliadis, P., Trujillo,
J.: Data mapping diagrams for data warehouse design with UML. Concept. Model.
2004. 191204 (2004).

17. Kimball, R., Ross, M.: The Data Warehouse Toolkit, The Definitive Guide to
Dimensional Modeling. (2013).

18. Omg, Object Management Group: Object Management Group, Model Driven Ar-
chitecture (MDA). OMG Doc. ormsc/2014-06-01. 2.0, 115 (2014).

19. Korobko, A.V., Penkova, T.G.: On-line analytical processing based on formal con-
cept analysis. In: Procedia Computer Science (2010).

20. Federal State Statistics Service, http://www.gks.ru/wps/wcm/connect/ros-
stat main/rosstat/ru/statistics/accounts/.

196

The Analytical Object Model as a Base of Heterogeneous Data Integration 11

21. Central Bank of Russia for financial market indicators,
http://www.cbr.ru/development/DWS/.

22. Federal Tax Service for open governmental data, https://www.nalog.ru/opendata/.
23. Listing of Open Access Databases - LOADB,

http://www.loadb.org/Control.do? brse.

197

Computable Topology for Reliable
Computations �

Margarita Korovina1 and Oleg Kudinov2

1 A.P. Ershov Institute of Informatics Systems, SbRAS,
rita.korovina@gmail.com

2 Sobolev Institute of Mathematics, SbRAS, Novosibirsk State University,
kud@math.nsc.ru

Abstract. Using the framework of computable topology we investigate
computable minimality of lifted domain presentations of computable Pol-
ish spaces, in particular the real numbers, the Cantor and Baire spaces,
the continuous functions on a compact interval, which are widely used in
theoretical computer science, e.g., automata theory, computable analysis
and reliable computations. We prove that all lifted domain presentations
for computable Polish spaces are computably and topologically minimal.
We establish a criterion of computable minimality for any effective do-
main presentation. Then we show that a naive adaptation of the notion
of stability from computable model theory does not work. Instead of that
we propose another approach based on principal translators and prove
that in the case of the real numbers we can effectively construct a prin-
cipal computable translator from the lifted domain presentation to any
other domain presentation.

Keywords: computable topology, reliable computation, computable analysis,
lifted domain.

1 Introduction

Computations over continuous data are central in scientific computing and en-
gineering. This motivates research in investigating properties of different frame-
works for representing computable objects and computations over them. One
such frameworks is the well established domain theory approach proposed by
D. Scott [23] and Yu.L. Ershov [3], where computational processes and a data
types are modelled using appropriate algebraic or continuous domains.

Informally, any representation of a space X is the factorisation of a part
D̃ of an appropriate algebraic domain D up to homeomorphism. The existence
and uniqueness of representations of spaces by (algebraic) Scott-Ershov domains
have been investigated in [4, 5], where the some canonical representations have
been introduced. However the uniform characterisations of such representations

� The research leading to these results has received funding from the DFG grants
WERA MU 1801/5-1 and CAVER BE 1267/14-1 and RFBR grant A-17-01-00247.

198

have not been proposed in details. In this paper, we address similar problems in
the setting of continuous domains which are more suitable, in practice, for con-
tinuous data computations [23, 2]. We aimed at uniting independently developed
concepts of computability on computable metric spaces and on weakly effective
ω−continuous domains [26, 11, 17].

In particular, following ideas from [28, 1, 13], we propose homeomorphic em-
beddings of computable Polish spaces into the lifted domains that endow the
original spaces with computational structure and investigate the following nat-
ural problems. One of them whether lifted domain presentations of computable
Polish spaces are computably and/or topologically minimal. Another one con-
cerns a characterisation of translators from lifted domain presentations to other
domain presentations of computable Polish spaces. These problems originated
in computable model theory [19, 21] and are related to stability of structures
and spaces. In particular, we show the cases when computable and continuous
translations between different presentations of spaces exist and/or unique.

In this paper we introduce a key notion of computably minimal domain pre-
sentation and show that canonical lifted domain presentations are computably
minimal. Moreover, since there are infinitely many computable translators from
any computably minimal domain presentation to any computable one (see, Sec-
tion 3.4), using the idea of a principal (maximal) computable numbering from
recursion theory [24] we introduce the notion of a principal computable (contin-
uous) translator and prove that in the case of the real numbers we can effectively
construct a principal computable translator from the lifted domain presentation
to any other domain presentation.

The paper is organised as follows. In Section 2 we give some basic concepts
from domain theory, computable Polish spaces and effectively enumerable topo-
logical spaces. We use effectively enumerable T0-spaces as a uniform framework
to represent computability on domains and computable Polish spaces. Section 3
contains the main contributions of the paper. We first computably embed a
computable Polish space P into a lifted domain DP that is weakly effective ω–
continuous domain such that the Scott topology on DP agrees with the standard
topology on P and the proposed embedding is a homeomorphism between the
set of maximal elements and the original space. We prove that lifted domain pre-
sentations are computably and topologically minimal. We establish a criterion
of computable mininality for any effective domain presentation. Then we show
that while all topologically minimal presentations of computable Polish spaces
are not stable there exist principal translators in the case of the lifted domain
presentation of the reals.

2 Preliminaries

We refer the reader to [11, 13, 14, 26, 25, 27] for basic definitions and fundamental
concepts of computable topology and to [2, 1] for basic definitions and fundamen-
tal concepts of domain representations of reliable computations. A numbering
of a set Y is a total surjective map γ : ω → Y . We use the standard denota-

199

tions for the real numbers R and C([a, b]) for the set of continuous real-valued
functions defined on a compact interval [a, b].

2.1 Weakly effective ω-continuous domains

In this section we present a background on domain theory. The reader can find
more details in [2, 10]. Let (D;⊥,≤) be a partial order with a least element ⊥.
A subset A ⊆ D is directed if A �= ∅ and (∀x, y ∈ A)(∃z ∈ A)(x ≤ z ∧ y ≤ z).
We say that D is a directed complete partial order, denoted dcpo, if any directed
set A ⊆ D has a supremum in D, denoted

⊔
A. For two elements x, y ∈ D we

say x is way-below y, denoted x � y, if whenever y ≤ ⊔
A for a directed set

A, then there exists a ∈ A such that x ≤ a. A function f : D → D̃ between
cpos is continuous if f is monotone and for each directed set A ⊆ D we have
F (

⊔
A) =

⊔{f(x) | x ∈ A}. We say thatB ⊆ D is a basis (base) forD if for every
x ∈ D the set approxB(x) = {y ∈ B | y � x} is directed and x =

⊔
approxB(x).

We say that D is continuous if it has a basis; it is ω–continuous if it has a
countable basis.

Definition 1. [10] Let D = (D;B, β,≤,⊥) be an ω–continuous domain with a
basis B and its numbering β : ω → B. We say that D is weakly effective if the
relation β(i) � β(j) is computably enumerable.

One of the well-known examples of weakly effective ω–continuous domains is the
interval domain IR = {[a, b] | a, b ∈ R, a ≤ b} ∪ ⊥ with the inverse order and
the countable basis that is the collection of all compact intervals with rational
endpoints together with the least element ⊥ (see e.g. [2]).

Proposition 1 (Interpolation Property). [10] Let D be a continuous do-
main and let M ⊆ D be a finite set that (∀a ∈ M) a � y. Then there exists
x ∈ Dsuch that M � x � y holds. If B is a basis for D then x may be chosen
from B.

2.2 Perfect Computable Polish spaces

In this paper we work with the following notion of a computable Polish space ab-
breviated as CPS. A perfect computable Polish space, simply computable Polish
space, is a complete separable metric space P without isolated points and with a
metric d : P × P → R such that there is a countable dense subset B called a ba-
sis of P with the numbering α : ω → B that makes the following two relations:
{(n,m, i) | d(α(n), α(m)) < qi, qi ∈ Q} and {(n,m, i) | d(α(n), α(m)) > qi, qi ∈
Q} computably enumerable (c.f. [28]).

The standard notations B(x, y) and B(x, y) are used for open and closed
balls with the center x and the radius y. We also use the notation α(n) = bn for
a numbering α : ω → B.

200

2.3 Effectively Enumerable Topological Spaces

Let (X, τ, α) be a topological space, where X is a non-empty set, Bτ ⊆ 2X is a
base of the topology τ and α : ω → Bτ is a numbering. In notations we skip τ
since it can be recovered by α. Further on we will often abbreviate (X,α) by X
if α is clear from a context.

Definition 2. [17] A topological space (X,α) is effectively enumerable if there
exists a computable function g : ω × ω × ω → ω such that α(i)

⋂
α(j) =⋃

n∈ω α(g(i, j, n)). and the set {i | α(i) �= ∅} is computably enumerable.

Definition 3. Let (X,α) be an effectively enumerable topological space.

1. A set O ⊆ X is effectively open if there exists a computably enumerable set
V such that O =

⋃
n∈V α(n).

2. A sequence {On}n∈ω of effectively open sets is called computable if there
exists a computable sequence {Vn}n∈ω of computably enumerable sets such
that On =

⋃
k∈Vn

α(k).

Let OX denote the set of all open subsets of X and Oe
X denote the set of all

effectively open subsets of X.

Definition 4. [14] Let X = (X,α) be an effectively enumerable topological space
and Y = (Y, β) be an effectively enumerable T0–space. A function f : X → Y
is called partial computable (pcf) if the following properties hold. There exist a
computable sequence of effectively open sets {On}n∈ω and a computable function
H : ω2 → ω such that

1. dom(f) =
⋂

n∈ω On and
2. f−1(β(m)) =

⋃
i∈ω α(H(m, i)) ∩ dom(f).

In the following if a partial computable function f is everywhere defined we
say f is a computable function. It is easy to see that computable functions are
effectively continuous and map a computable element to a computable element
(c.g. [27]).

Remark 1. It is worth noting that the weakly effective ω–continuous domains
and computable Polish spaces with induced topologies are proper subclasses of
effectively enumerable T0–spaces [17]. Therefore for uniformity we consider all
those spaces in the settings of the effectively enumerable T0–spaces.

3 Main Results

In this section we first computably embed a computable Polish space P into
a lifted domain DP that is a weakly effective ω–continuous domain such that
the Scott topology on DP agrees with the standard topology on P and the pro-
posed embedding is a homeomorphism between the set of maximal elements and
the original space. We prove that lifted domain presentations are computably
and topologically minimal. We establish a criterion of computable minimality of
any effective domain presentations. Then we show that while all topologically
minimal presentations of computable Polish spaces are not stable there exist
principal translators in the case of the lifted domain presentation of the reals.

201

3.1 Effective (Continuous) Domain Presentations for CPS

Definition 5. Let P be a computable Polish space. A triple (P,D, ϕ) is called
an effective (continuous) domain presentation if

1. D = (D;B, β,≤,⊥) is a weakly effective ω–continuous domain;
2. The function ϕ : P → D is a computable (continuous) homeomorphic embed-

ding such that im(ϕ) =
⋂

n∈ω On for some computable sequence of effectively
open sets {On}n∈ω.

The definition has been motivated by observations and examples in [29, 1, 18].
Thus in [18] we proposed a computable homeomorphic embedding ϕ : C[0, 1] →
D, where D is a weakly effective ω–continuous domain consisting of all continuous
functions from the compact [0, 1] to IR. Remarkably it turns out that dom(ϕ) ⊂
max(D) and (C[0, 1],D, ϕ) is an effective domain presentation.

We recall from [13] the construction and properties of lifted domains for
computable Polish spaces. Let P = (P, d,B) ∈ CPS. Then the lifted domain
(DP, ψ) for P ∈ CPS is defined as follows:
DP � P × R+ = {(a, r) | a ∈ P and r ∈ R+}; (b, q) ≤ (a, r) � d(a, b) + r ≤ q;
B � {(a, q) | a ∈ B and q ∈ Q>0} and the numbering β : ω → B is induced
by α : ω → B and the standard numbering of Q>0. It is easy to see that the
way-below relation � has the property (b, q) � (a, r) ↔ d(a, b) + r < q. and
the sub-basis of the Scott topology τDP is the set of open sets Un,q = {(b, r) |
(b, r) � (α(n), q), where α(n) ∈ B and q ∈ Q>0}. The function ψ is defined as
follows ψ(a) = (a, 0).

Remark 2. On the real numbers R with the standard metric there is a one-to-
one correspondence between the pair (a, r) and the closed ball B(a, r) and the
relation ≤ coincides with the inverse non-strict inclusion, i.e., (b, q) ≤ (a, r) ↔
B(a, r) ⊇ B(a, r). Unfortunately, in general on a computable Polish space there
is no such intuitive natural correspondence.

Proposition 2. The lifted domain (DP, ψ) for P ∈ CPS has the following
properties:

1. DP = (DP;B, β,≤,⊥) is a weakly effective ω–continuous domain;
2. ψ : P → DP is a computable canonical homeomorphic embedding;
3. im(ψ) is dense in DP and coincides with the set of maximal elements;
4. im(ψ) is an effective intersection of effectively open sets;
5. B ∩ im(ψ) = ∅.
Proof. The claims follow from [13, 14].

Corollary 1. Let (DP, ψ) be the lifted domain for P ∈ CPS. Then (P,DP, ψ) is
an effective domain presentation.

Further on we call (P,DP, ψ) as a lifted domain presentation.

Proposition 3. The interval domain IR is computationally isomorphic to the
lifted domain presentation (R,DR, ψ).

Proof. The claim is straightforward from Remark 2.

202

3.2 Computable and Topological Minimality

In this section we assume that P = (P, d,B) ∈ CPS, (DP, ψ) is the corresponding
lifted domain for P. For the basic elements of a weakly effective ω–continuous
domain D = (D;B, β,≤,⊥) we use the following notation B = {β1, . . . , βn, . . . }.

Definition 6. Let (P,D1, ϕ1) and (P,D2, ϕ2) be effective (continuous) domain
presentations. A function F : D1 → D2 is called a computable (continuous)
translator if the following diagram is commutative:

P D1

D2

ϕ1

ϕ2

F

Definition 7. An effective (continuous) domain presentation (P,D, ψ) is called
computably (topologically) minimal if for any effective (continuous) domain pre-

sentation (P, D̃, ψ̃) there exists a computable (continuous) translator G : D → D̃.

Theorem 1. For any computable Polish space P the lifted domain presentation
(P,DP, ψ) is computably minimal.

The proof is based on the following propositions.

Lemma 1. Let D = (D;B, β,≤,⊥) be a weakly effective ω–continuous domain
and X be an effectively enumerable topological space. If a function f : X → D is
computable then the following accessions hold.

1. Let Aβ = f−1(Uβ), where Uβ = {d ∈ D | d � β}. Then {Aβ}β∈B is
a computable sequence of effectively open subsets of X such that, for all
β, γ ∈ B, Aβ =

⋃
β′�β Aβ′ , Aβ ∩ Aγ =

⋃
β′�β∧β′�γ Aβ′ and if β ≤ γ then

Aβ ⊇ Aγ .
2. f(x) =

⊔{β ∈ B | x ∈ Aβ}.

Proof. Let us show the first accession. Computability of the sequence {Aβ}β∈B

follows from computability of f . The relation Aβ ⊇ ⋃
β′�β Aβ′ is straightfor-

ward. Assume now that x ∈ Aβ . By definition, f(x) ∈ Uβ , i.e., f(x) � β. By the
interpolation property there exists β� ∈ B such that f(x) � β� � β. So x ∈ Aβ′ ,
x ∈ ⋃

β′�β Aβ′ . The relation Aβ ∩ Aγ ⊇ ⋃
β′�β∧β′�γ Aβ′ is straightforward. In

order to show Aβ ∩ Aγ ⊆ ⋃
β′�β∧β′�γ Aβ′ we assume x ∈ Aβ ∩ Aγ . By defini-

tion, f(x) � β and f(x) � γ. By the interpolation property and computability
of f there exists β� ∈ B such that f(x) � β� and β� � β ∧ β� � γ. So x ∈ Aβ′ .

The second assertion follows from the following observation. On the one hand,
if x ∈ Aβ then f(x) � β, so f(x) ≥ ⊔{β ∈ B | x ∈ Aβ}. On the another hand,
if f(x) � β� then x ∈ Aβ′ , so β� ≤ ⊔{β ∈ B | x ∈ Aβ}. Since f(x) =

⊔{β� |
β� � f(x)} we have f(x) ≤ ⊔{β ∈ B | x ∈ Aβ}.

203

Lemma 2. Let D = (D;B, β,≤,⊥) be a weakly effective ω–continuous domain
and X be an effectively enumerable topological space and {Aβ}β∈B be a com-
putable sequence of effectively open sets open subsets of X such that

1. If β1 ≤ β2 then Aβ1
⊇ Aβ2

.
2. For all β, γ ∈ B, Aβ =

⋃
β′�β Aβ′ and Aβ ∩ Aγ =

⋃
β′�β∧β′�γ Aβ′ . Then

the function F : X → D defined as follows F (x) =
⊔{β ∈ B | x ∈ Aβ} is

computable. Moreover, Aβ = F−1(Uβ).

Proof. It is sufficient to show that x ∈ F−1(Uβ) ↔ F (x) � β. If x ∈ Aβ then
there exists β� � β such that x ∈ Aβ′ . and F (x) � β� � β, i.e., F (x) � β. If
F (x) � β then there exists β� � β such that x ∈ Aβ′ and β� ≥ β, so x ∈ Aβ .

Theorem 2. Let D = (D;B, β,≤,⊥) be a weakly effective ω–continuous do-
main, P be a computable Polish space and (P,DP, ψ) be its lifted domain. Then
for any computable function f : P → D one can effectively construct a computable
extension F : DP → D such that

1. F
(
ψ(x)

)
= f(x).

2. The following diagram is commutative:

P DP

D

f

ψ

F

Proof. The claim follows from Lemma 1–2. Indeed, let f : P → D be a com-
putable function. By Lemma 1 we construct a computable sequence {Aα}α∈BD
of effectively open subsets of P that satisfies all properties from Lemma 1. Then,
applying thee canonical embedding ψ we get a computable sequence {Oα}α∈BD
of effectively open subsets of DP such that

1. For all β, γ ∈ BD, Oβ ∩ Oγ =
⋃

δ�β, δ�γ Oδ.
2. If β1 ≤ β2 then Oβ1

⊇ Oβ2
.

3.
⋃

(a,r)∈Oα
B(a, r) = Aα.

Using {Oα}α∈BD and Lemma 2, we can effectively construct the computable
function F : DP → D. From the property (3) of the computable sequence
{Oα}α∈BD it follows that for all x ∈ P and α ∈ BD f(x) � α ↔ F (ψ(x)) � α.
Therefore f(x) = F (ψ(x)), so the required diagram is commutative.

Remark 3. It is worth noting that the statement of the previous theorem holds
not only for any lifted domain presentation but also for any effective domain
presentation ϕ : P → D0 with ϕ−1 is pcf.

Corollary 2. For any computable Polish space P the lifted domain presentation
(P,DP, ψ) is topologically minimal.

Proof. The claim follows from the relativization of Theorem 1 to an oracle mak-
ing a lifted domain presentation computably minimal.

204

3.3 Criterion of Computable Minimality

Theorem 3. For an effective domain presentation (P,D, ϕ) the following asser-
tions are equivalent.

1. (P,D, ϕ) is computably minimal.
2. g = ϕ−1 is pcf.

Proof. 1) → 2). By definition we have the commutative diagram

P

D DP

ϕ
ψ

F

where F : D → DP is a computable translator. Since the function h ≡ ψ−1 is
pcf, we can put g be equal to the restriction of the composition h ◦ F to the set
im(ϕ). From [14] it follows that g is also pcf and g = ϕ−1.
2) → 1). The claim follows from Theorem 2 and Remark 3.

In order to illustrate how this criterion works we consider the function do-
main If [0, 1] = {f | f : [0, 1] → IR is continuous} and the considered in [18]
natural homeomorphic embedding ϕ : C[0, 1] → If [0, 1]. From [18] it follows
that ϕ has the inverse g = ϕ−1 that is pcf. Therefore (C[0, 1], If [0, 1], ϕ) is com-
putably minimal. Our considerations above revel the following properties of the
interval domain for real numbers that widely used in domain theory and interval
computations.

Theorem 4. Let (P1,DP1 , ψ1) be a lifted domain presentation and (R, IR, ψ2)
be the interval domain for the reals. For any pcf f : P1 → R there exists a total
computable function F : DP1 → IR such that

1. f(x) = y ↔ F (ψ1(x)) = ψ2(y) ∧ (x ∈ dom(f));
2. if x �∈ dom(f) then F (ψ1(x)) �∈ max(IR).
Proof. Let f : P1 → R be pcf. In [12] we have shown that for the class of real-
valued functions from computable metric spaces the notion of pcf coincides with
majorant-computability. That means that we can effectively construct effectively
open sets U(x, y) and V (x, y) such that V (x, ·) < U(x, ·) and

f(x) = y ↔ ∀z1∀z2 (V (x, z1) < y < U(x, z2)) ∧
{z | V (a, z)} ∪ {z | U(a, z)} = R \ {y}.

Now we define H : P1 → IR as follows: Put

H(x) =

{
[sup{y | V (x, y), inf{z | U(x, z)}] if V (x, ·), U(x, ·) �= ∅
⊥, otherwise.

It is easy to see that H is a computable function and, for all x ∈ P, H([x]) =
f(x). Then the existence of F follows from Theorem 2.

205

3.4 Principal Translators

In this section we introduce the notion of a principal computable (continuous)
translator and prove that in the case of the real numbers we can effectively
construct a principal computable translator from the lifted domain presentation
to any other domain presentation.

Definition 8. Let P be a computable Polish space and (P,D1, ϕ1) and (P,D2, ϕ2)
be its effective (continuous) domain presentations. A computable (continuous)
translator G : D1 → D2 is called principal if for any computable (continuous)
translator F : D1 → D2 we have F ≤ G.

Definition 9. For a computable Polish space P, a continuous (computable) do-
main presentation (P,D, ϕ) is called (computably) stable if for any continuous

(computable) domain presentation (P, D̃, ψ̃) there exists a unique continuous

(computable) translator G : D → D̃.

Proposition 4. For any computable Polish space the lifted domain presentation
is neither computably stable nor stable.

Proof. It is sufficient to show that there are infinitely many continuous even
computable translators for D̃ ≡ DP. Put

G ≡ id and ϕq

(
(a, r)

)
= (a, q ∗ r), where q ∈ Q+ and q > 1.

We have:

P DP

DP

ψ

ψ

id

ϕq

All of these translators are computable and different from each other.

Proposition 5. If a continuous domain presentation (P,D, θ) is topologically
(computably) minimal then it is not (computably) stable.

Proof. Let D = (D;B, β,≤,⊥). It is enough to observe topological part, the rest
is just an analog. Assume F : D → DP is a continuous translator. We have the
following commutative diagram:

P D

DP DP

ψ

θ

ψ

ϕq

F

206

Since F (B) �⊆ max(DP), there exists a ∈ B such that F (a) �∈ max(DP). Then
ϕq(F (a)) �= F (a), where ϕ is defined in Proposition 4. We have ϕq ◦F : D → DP

is a continuous translator and ϕq ◦ F �≡ F .

Theorem 5. Let (P,DP, ψ) be the lifted domain presentation and (P, D̃, ψ̃) be

a continuous domain presentation such that D̃ is a complete upper semilattice
(cusl). Then there exists a principal continuous translator G : DP → D̃.

Proof. Let us define

G
(
(a, r)

)
=

⊔
{g

(
(a, r +

1

n
)
)
}n∈ω, where g

(
(a, r)

)
= inf{ψ̃(x) | (a, r) ≤ ψ(x)}.

From the definition of ψ it is easy to see that g
(
(a, r)

)
= inf{ψ̃(x) | (a, r) ≤

(x, 0)} = inf{ψ̃(x) | x ∈ B(a, r)}. In order to show that G is a required we
prove that G is total and monotone, preserves limits and makes the diagram
commutative.
Totality. It is worth noting that for any Y ⊆ D̃ there exists inf(Y). Indeed,

since D̃ is cusl the set {z | z ≤ Y } is directed. Therefore inf(Y) =
⊔{z | z ≤ Y }

for Y �= ∅ and inf(∅) = ⊥ by the definition of dcpo.
Monotonicity. By definition it is clear that g is monotone Assume (b, R) ≤
(a, r), i.e., d(a, b) + r ≤ R. By definition, G

(
(a, r)

)
=

⊔
inf{ψ̃(x) | x ∈ B(a, r +

1
n)}n∈ω, G

(
(b, R)

)
=

⊔
inf{ψ̃(x) | x ∈ B(b, R + 1

n)}n∈ω and, by assumption,

(b, R+ 1
n) ≤ (a, r + 1

n). Therefore G
(
(b, R)

)
≤ G

(
(a, r)

)
.

Limit preservation. Since D̃ is a weakly effective ω–continuous domain to prove
thatG preserves limits it is sufficient to consider countable directed sets. We show
first that for any directed sets A, B ⊆ D, if

⊔A =
⊔B = (a, r) and A � (a, r),

B � (a, r) then
⊔{g

(
(a, r)

)
| (a, r) ∈ A} =

⊔{g
(
(b, R)

)
| (b, R) ∈ B} that looks

as the low semi-continuity condition. Let us pick a basic elements β ∈ B̃ such
that β � ⊔{g

(
(a, r)

)
| (a, r) ∈ A}. By the definition of the way-below relation,

there exists (a, r) ∈ A such that β � g
(
(a, r)

)
so for all x ∈ B(a, r) we have

β � ψ̃(x). Since
⊔A =

⊔B there exists (b, R) ≥ (a, r) so for all x ∈ B(b, R) we

have β � ψ̃(x). This means β � ⊔{g
(
(b, R)

)
| (b, R) ∈ B}. Since β is arbitrary

chosen
⊔{g

(
(a, r)

)
| (a, r) ∈ A} ≥ ⊔{g

(
(b, R)

)
| (b, R) ∈ B}. By symmetry,⊔{g

(
(a, r)

)
| (a, r) ∈ A} =

⊔{g
(
(b, R)

)
| (b, R) ∈ B}.

Now assume that, for a countable directed set A ⊆ D,
⊔A = (a, r). It is well-

known that we can extract some monotone sequence {(an, rn)}n∈ω of elements
of A such that

⊔{(an, rn)}n∈ω = (a, r). Therefore it is sufficient to prove that⊔{G
(
(an, rn)

)
}n∈ω = G(a, r). By definition G

(
(an, rn)

)
=

⊔{(an, rn+ 1
k}k∈ω. It

is easy to see that
⊔{(an, rn+ 1

k)}n,k∈ω = (a, r) and (an, rn+
1
k) � (a, r) for all

n, k ∈ ω. By the property of g which we proved above
⊔{g

(
(an, rn+

1
k)
)
}n,k∈ω =⊔{g

(
a, r + 1

m

)
}m∈ω so

⊔
G
(
(an, rn)

)
= G

(
(a, r)

)
. Therefore G is a continuous

function.
Commutativity of the diagram. We show that ψ̃

(
x
)
= G

(
ψ(x)

)
, i.e, ψ̃

(
x
)
=

G
(
(x, 0)

)
since ψ(x) = (x, 0). By definition, G

(
(x, 0)

)
=

⊔{g
(
(x, 1

n)
)
} and, for

207

all n ∈ ω, g(x, 1
n) ≤ ψ̃(x). Therefore ψ̃(x) ≥ G

(
(x, 0)

)
. Since ψ̃ is continuous

in x for all β̃ ∈ B̃ such that β̃ � ψ̃(x) there exist σ > 0 such that for all

y ∈ P if d(y, x) < σ then b̃ � ψ̃(y). It is worth noting that if 1
n < σ then

g(x, 1
n) ≤ β̃. So we have G

(
(x, 0)

)
≥ β̃. By continuity, ψ̃(x) =

⊔{β̃ | β̃ � ψ̃(x)}
so ψ̃(x) ≤ G

(
(x, 0)

)
.

Maximality. Let us show that for any continuous translator F : DR → D̃ we
have F ≤ G. First we observe that if x ∈ max(DP) then F (x) = G(x). By

monotonicity of F , F
(
(a, r)

)
≤ inf{ψ̃(x) | (a, r) ≤ ψ(x)} = g

(
(a, r)

)
. Simi-

larly, F
(
(a, r + 1

n)
)
≤ g

(
(a, r + 1

n)
)
. Since G

(
(a, r)

)
=

⊔{g
(
(a, r + 1

n)
)
}n∈ω and

F
(
(a, r)

)
=

⊔{F
(
(a, r + 1

n)
)
}n∈ω we have F

(
(a, r)

)
≤ G

(
(a, r)

)
. As a corollary

G is a required function.

Theorem 6. Let (R,DR, ψ) be the lifted domain presentation and (R, D̃, ψ̃) be

an effective domain presentation such that D̃ is a cusl. Then there exists a prin-
cipal computable translator G : DR → D̃.

Proof. Let us show that in the case of P = R, the continuous function G from
the previous proof is computable under the assumption that ψ̃ is computable.
Computability. In order to show that G is computable it is sufficient to show
that F (βk) � β̃m is computably enumerable. First we assume that βk = (ak, rk)

and observe that the relation g
(
(ak, rk)

)
� β̃m is computable enumerable. It

follows from the following formula and the uniformity principle [16].

g
(
(ak, rk)

)
� β̃m ↔ (∀x ∈ B(ak, rk)) ψ̃(x) � β̃m ↔

(∀x ∈ B(ak, rk))x ∈ ψ̃−1(Uβ̃m
).

Since, by definition, G
(
(ak, rk)

)
=

⊔{g
(
(ak, rk + 1

n)
)
}n∈ω we have

G
(
(ak, rk)

)
� β̃m ↔ (∃n ∈ ω) g

(
(ak, rk +

1

n
)
)
� β̃m.

Therefore the required relation is computably enumerable and G is computable.

4 Conclusion and Future Work

In this paper we characterised computably minimal presentations of computable
Polish spaces. We showed that between any computably minimal presentations
one can effectively construct a translator. This gives a technique to convert one
computably minimal presentation to another. Therefore a user can chose any
preferable computably minimal presentation and then if necessary convert to
canonical one. As a corollary we obtained that the effective domain of continu-
ous functions on a compact interval is convertible to the formal ball presentation
and vise versa. For the lifted domain of real numbers we provided a principal
computable translator. This highlighted a direction of how to approach a for-
malisation of higher type computations over the reals.

208

References

1. Edalat, A. and Heckmann, R. (1998) A Computational Model for Metric Spaces.
Theor. Comput. Sci. 193 (1-2), 53–73.

2. Edalat, A. (1997) Domains for computation in mathematics, physics and exact real
arithmetic. Bulletin of Symbolic Logic 3 (4), 401–452.

3. Ershov, Yu. L. Computable functionals of finite types, Algebra and Logic 11 (4),
1996 pages 367-437.

4. Blanck, J. (2013) Interval Domains and Computable Sequences: A Case Study of
Domain Reductions. The Computer Journal 56 (1), 45-52.

5. Blanck, J. (1997) Domain Representability of Metric Spaces. Ann. Pure Appl. Logic
83 3, 225–247.

6. Brattka, V. (2001) Computable Versions of Baire’s Category Theorem. InMFCS’99,
Lecture Notes in Computer Science 2136, 224-235. Springer.

7. Calvert, W., Fokina, E., Goncharov, S. S., Knight, J. F., Kudinov, O. V., Moro-
zov, A. S. and Puzarenko, V. (2007) Index sets for classes of high rank structures.
J. Symb. Log. 72 (4), 1418-1432.

8. Calvert, W., Harizanov, V. S., Knight, J. F., Miller, S. (2006) Index sets of com-
putable structures. J. Algebra and Logic 45 (5), 306–325.

9. Cenzer, D.A., Remmel, J.B. (1999) Index Sets in Computable Analysis. Theor.
Comput. Sci. 219 (1-2), 111-150.

10. Gierz, G., Heinrich Hofmann, K., Keime, lK., Lawson, J. D. and Mislove, M. W.
(2003) Continuous Lattices and Domain. Encyclopedia of Mathemtics and its Ap-
plications 93, Cambridge University Press.

11. Grubba, T., Weihrauch, K. (2009) Elementary Computable Topology. J. UCS.
15 (6), 1381–1422.

12. Weak Reduction Principle and Computable Metric Spaces (2018) In Proc. CiE’18,
Lecture Notes in Computer Science, 10936. Springer.

13. Korovina, M. and Kudinov, O. (2018) Highlights of the Rice-Shapiro Theorem in
Computable Topology. In Postproc. PSI’17, Lecture Notes in Computer Science
10742, 241–255. Springer.

14. Korovina, M. and Kudinov, O. (2017) Outline of Partial Computability in Com-
putable Topology. (invited paper) In Proc. CiE’17, Lecture Notes in Computer
Science 10307, 64–76. Springer.

15. Korovina, M. and Kudinov, O. (2015) Index sets as a measure of continuous con-
straints complexity. In Proc. PSI’14, Lecture Notes in Computer Science 8974,
201–215. Springer.

16. Korovina, M. and Kudinov, O. (2009) The Uniformity Principle for Sigma-
definability. J. Log. Comput. 19 (1), 159–174.

17. Korovina, M. and Kudinov, O. (2008) Towards Computability over Effectively
Enumerable Topological Spaces. Electr. Notes Theor. Comput. Sci. 221, 115–125.

18. Korovina, M. and Kudinov, O. (2001) Formalisation of Computability of Opera-
tors and Real-Valued Functionals via Domain Theory. Lecture Notes in Computer
Science 2064, 146–168.

19. Mal’Cev, A. (1961) Constructive algebras. Uspehi Math Nauk, 16 (3), 3–60.
20. Moschovakis, Y. N. (1964) Recursive metric spaces. Fund. Math. 55, 215–238.
21. Rabin, M. (1960) Computable algebra, general theory and theory of computable

fields. Transactions of the American Mathematical Society 95, 341360.
22. Rogers, H. (1967) Theory of Recursive Functions and Effective Computability

McGraw-Hill, New York.

209

23. Scott, D. (1982) Lectures on a Mathematical Theory of Computation. Theoretical
Foundations of Programming Methodology, 145-292.

24. Soare, R. I. (1987) Recursively Enumerable Sets and Degrees: A Study of Com-
putable Functions and Computably Generated Sets. Springer.

25. Spreen, D. (1995) On Some Decision Problems in Programming. Inf. Comput.
122 (1), 120-139.

26. Spreen, D. (1998) On Effective Topological Spaces. J. Symb. Log. 63 (1), 185–221.
27. Weihrauch, K. (2000) Computable Analysis. Springer Verlag.
28. Weihrauch, K. (1993) Computability on Computable Metric Spaces. Theor. Com-

put. Sci. 113 (1), 191–210.
29. Weihrauch, K. and Schreiber, U. (1981) Embedding metric spaces into cpos. The-

oret. Comput. Sci. 16, 5-24.

210

About Leaks of Confidential Data in the Process of
Indexing Sites by Search Crawlers1

Sergey Kratov[0000-0001-9068-9267]

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk,
Russia

kratov@sscc.ru

Abstract. The large number of sites for very different purposes (online stores,
ticketing systems, hotel reservations, etc.) collect and store personal information
of their users, as well as other confidential data, such as history and results of
user interaction with these sites. Some of such data, not intended for open access,
nevertheless falls into the search output and may be available to unauthorized
persons when specific requests are made. This article describes the reasons for
such incidents occurrence and the basic recommendations for technical special-
ists (developers and administrators) that will help prevent leaks.

Keywords: Data Leaks, Site Indexing, Search Crawlers, Robots.txt, Noindex,
X-Crawlers-Tag, Htaccess.

1 The Possible Sources of Data Leaks

One of the factors determining the effectiveness of the search is the completeness of
the index. So the search engines try to index as many pages as possible to select those
that most closely match the users' requests. Therefore, in addition to going through the
links on the pages, the search engines also resort to other methods that allow it to dis-
cover the appearance of new pages on the Internet. Very often sites generate individu-
alized pages for each user. So that search engines cannot get to seemingly public pages
from links on the main page of the site. Accordingly, it is logical for search engines to
obtain page addresses for indexing from as many sources as possible. In particular, for
example, users agree by default with possible analysis and collection of browsers anon-
ymous data on page visits and other actions, when installing browsers, often developed
by search engines (Yandex, Google). This is the legal way for search engines to collect
most of the pages ever viewed by users. For example, Yandex.Browser collects anon-
ymized statistical information, which includes, in addition, the addresses of the pages
visited. This happens in all cases when the user clearly did not forbid doing this in the
browser settings (the option "Send usage statistics to Yandex"). At the same time, the-

1 The research was supported by the project 0315-2016-0006.

211

2

matic forums for developers described situations when, due to a technical error of Yan-
dex employees, information about individual pages viewed in the browser came to the
list of indexing for Yandex crawlers.

Another source of data for the search engines index replenishment can be the coun-
ters of analytical systems (the most common ones in Russia are Yandex.Metrica and
Google Analytics) placed in the page source code. For example, as specified in the
Yandex.Metrica user agreement [1] if site administrators do not forbid sending site
pages to indexing, the addresses of the pages on which the counter is installed are
passed to Yandex indexing (and it is possible subsequently to the search output). By
default, such option is enabled. That is how a few years ago SMS from the mobile
operator Megafon’s site fells in the search output. There was the possibility of anony-
mous sending SMS on the operator’s site to its clients. This did not require registration
on the site. At the same time, the site developers, for the convenience of users, gener-
ated for each sending a page with a random address, which displayed the SMS text and
the status of its delivery. These pages got into Yandex's search output and became avail-
able to any user of the search engine.

Only the couple of data leakage cases were listed above on the example of the one
of the search engines services. Nevertheless, there is no reason to suppose that the rest
of the search engines are fundamentally different. The issues of search engines legality
and their crawlers «ethical» nature in the data collection process have already been
repeatedly discussed in the other researchers’ works [2-4].

2 The Informing Developers and Users about the Possibility of
Leaks

Search crawlers cannot access and indexing information from pages that require au-
thorization. At the same time, modern sites often require complex passwords, which
are not always convenient for users to remember. For the convenience of users, devel-
opers often generate and send to users in emails (in plain text) links to pages with unique
long addresses from a random character set that cannot be guessed or enumerated. So
users can grant direct access to sites without entering a username and password. Users
navigate through such link, their browser or analytics counter tells the search engine
that an unknown page has appeared, the search crawler indexes it. In this case, the
crawler has no information about whether the personal data is placed on the page,
whether confidential information is contained in tables (for example, financial indica-
tors) or the content of the page is publicly available. Useful recommendations for de-
velopers who are forced to generate and send pages with automatic login are available
in the corresponding W3C manual [5].

Confidential data periodically fell into search indexes during the entire existence of
search engines. The number of such leaks, increased in recent years, is associated with
the growing popularity of the Internet and, accordingly, the number of users of the net-
work. More and more people are entering the network, now they are not only IT spe-
cialists, but also users far from information technologies. Most users believe that a doc-
ument accessible via a unique link is securely protected and will never get into the

212

3

index. The main changes to minimize the number of similar incidents in the future
should be done by site developers to ensure their quality work. Search engines, in turn,
should also fully cover their indexing mechanisms for both developers and site users.
In particular, to inform developers that any page that is available to users without au-
thorization can sooner or later get into the index and search output. The last such large-
scale data leak in the Russian-speaking Internet segment occurred in early July 2018.
The search engine Yandex indexed and included in its search output a large array of
documents from the Google Docs service. The documents were publicly available and,
accordingly, were available for indexing, but at the same time, many of them contained
confidential information not intended for unauthorized persons. Moreover, some of the
documents were not only available for viewing, but also for editing to any user who
passed them by link from the index. Formally, both Yandex and Google in this situation
acted within the law. The documents were excluded from the search output in identify-
ing the problem. The problem arose primarily because of the lack of users’ awareness
about the specifics of the access differentiation to their documents in the service. But
this fact does not cancel the presence of the problem itself.

3 The Prohibition of Confidential Data Indexing. Directives for
Search Crawlers

The most effective way to deny access to confidential information is to use authoriza-
tion to access it. However, in those cases when it is impossible or impractical for not to
complicate the work of users with the site, developers can use other methods that will
prevent search crawlers from indexing the contents of the pages and in many ways will
reduce the probability of their getting into the search output. For example, it is possible
to use the robots.txt file or corresponding tags in the HTML markup and page headers
[6-8].

The standard of exclusions for crawlers Robots.txt was adopted by the W3C in 1994
and has since been supported by most search engines. The standard is the text file de-
scribing the limitations of the search crawlers’ access to the web server’s content. This
file should be uploaded to the site’s root directory. The file consists of separate records,
the Disallow field is used to prevent indexing. With this field, developers can deny
access to individual directories / pages for all or individual search crawlers. The exam-
ple of the appropriate entry completely closing access to the site for search crawlers:

User-agent: *
Disallow: /

In the User-agent field, individual search crawlers can be enumerated, for example,
Yandex or Googlebot. In the Disallow field, you can specify both the name of the indi-
vidual file and the directory as a whole. More details about the syntax of robots.txt and
practical recommendations for its use can be read in the relevant standard [9] and earlier
studies on this topic [10, 11]. It is also recommended after creating or editing the file to
check its syntax correctness by using search engines special services [12, 13].

213

4

In cases where site administrators do not have access to the site root directory to host
the robots.txt file, or site administrators do not want to advertise the individual directo-
ries/files addresses, the noindex tag can be used anywhere in the HTML code of the
page:

<noindex> the text that does not need to be indexed </
noindex>

The noindex tag is not included in the official HTML specification so, if it is used in
the code of the pages, they may fail to validate the html code correctness. In such cases
the noindex tag can be used in the following format:

<! - noindex -> the text that does not need to be indexed
<! - / noindex ->

The noindex tag can also be used as the metatag, in which case its action will extend
to the entire text of the page as a whole:

<meta name = "crawlers" content = "noindex" />

In addition, although Google does not index the contents of pages blocked in the
robots.txt file, such pages URLs found on other pages on the Internet can still be in-
dexed [14]. In this case, the use of noindex in the metatag form in the page header will
further prohibit its indexing when a search crawler hits it.

The separate metatag can be requested to delete the previously indexed page copy
from the search engine cache:

<meta name = "crawlers" content = "noarchive" />

The noindex metatag can be used only in the code of html-pages. If developers want
to deny access to other types of documents, they can use the X-Crawlers-Tag metatag
contained in the HTTP header. An example of the HTTP header that prohibits crawlers
from indexing the page:

HTTP / 1.1 200 OK
...
X-Crawlers-Tag: noindex
...

If site works on the Apache web server, its administrators can insert the appropriate
headers using directives in the .htaccess file. For example, the following directives pro-
hibit search crawlers from indexing all pdf-files of the site:

<Files ~ "\ .pdf $">
Header set X-Crawlers-Tag "noindex, nofollow"
</ Files>

For more details about syntax and usage examples, see the appropriate Google man-
ual [15].

214

5

4 Conclusion

Unfortunately, using the above methods does not guarantee that the site pages and in-
dividual files will not be indexed. These methods are recommendatory for search crawl-
ers and the implementation or non-implementation of recommendations depends only
on the particular crawler. The problem is that different search engines differently inter-
pret the web servers’ directives, their recommendations for improving the sites’ index-
ing also often contradict each other. That is, the developers, having done everything
according to the Google’s instructions, can create a situation in which the Yandex will
index a lot of documents that should not have been indexed, and vice versa. For exam-
ple, Google does not handle noindex tags in the text of the pages, and Yandex - X-
Crawlers-Tag in HTTP headers.

Therefore, administrators of already working sites need to conduct their basic audit
for the leaking confidential data possibility to search engines:

 Carry out the entire tree of the site's links analysis - scan search output and other
sources (Yandex.Metrics, Google Analytics, Yandex.Webmaster and Google Search
Console). Identify the site’s pages containing confidential data. Finding the reasons
and determining how to hide these pages from indexing and from the publicly avail-
able part of the site.

 Analyze files, links to which are not present on the site pages - identify confidential
files accessible via direct links, including those that are not yet in the search output.
Search for the reasons for such files availability and determine how to hide them
from public access.

In addition to the above actions to prohibit the confidential data’s indexing, devel-
opers can also strongly encourage to take the following actions when creating new sites:

 Exclude any of the confidential data from sharing with authorization using.
 Identify search crawlers and block them from accessing any private information.

And developers should not only use one of the methods recommended by any search
engine, but duplicate, using all protection methods. Verify that the protection meth-
ods used are universal and workable for all search engines.

 Maximally inform users about all available privacy settings within each site.

References

1. Terms of Use of Yandex.Metriсa service, https://yandex.ru/legal/metrica_termsofuse/, last
accessed 2018/08/29.

2. Schellekens, M.H.M.: Are internet robots adequately regulated?. Computer Law and Secu-
rity Review 29(6), 666-675 (2013). doi: 10.1016/j.clsr.2013.09.003

3. Sun, Y., Councill, I.G., Giles, C.L.: The ethicality of web crawlers. In: Proceedings - 2010
IEEE/WIC/ACM International Conference on Web Intelligence, WI 2010, pp. 668-675.
(2010). doi: 10.1109/WI-IAT.2010.316

215

6

4. Giles, C.L., Sun, Y., Councill, I.G.: Measuring the web crawler ethics. In: Proceedings of
the 19th International Conference on World Wide Web, WWW '10, pp. 1101-1102. (2010).
doi: 10.1145/1772690.1772824

5. Good Practices for Capability URLs, https://www.w3.org/TR/capability-urls/, last accessed
2018/08/29.

6. Martin-Galan, B., Hernandez-Perez, T., Rodriguez-Mateos, D. et al.: The use of robots.txt
and sitemaps in the Spanish public administration. PROFESIONAL DE LA
INFORMACION, vol. 18, iss. 6, 625-630 (2009). doi: 10.3145/epi.2009.nov.05

7. Kolay, S., D'Alberto, P., Dasdan, A., Bhattacharjee, A.: A larger scale study of robots.txt.
In: Proceeding of the 17th International Conference on World Wide Web 2008, WWW'08,
pp. 1171-1172. (2008). doi: 10.1145/1367497.1367711

8. Sun, Y., Zhuang, Z., Councill, I.G., Giles, C.L.: Determining bias to search engines from
robots.txt. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intel-
ligence, WI 2007, pp. 149-155. (2007). doi: 10.1109/WI.2007.45

9. A Standard for Robot Exclusion, http://www.robotstxt.org/orig.html, last accessed
2018/08/29.

10. Tong, W., Xie, X.: A research on a defending policy against the Webcrawler's attack. In:
2009 3rd International Conference on Anti-counterfeiting, Security, and Identification in
Communication, ASID 2009 (2009). doi: 10.1109/ICASID.2009.5276948

11. Bates, M.E.: What makes information "public"?. Online (Wilton, Connecticut) 28(6), 64
(2009). doi: 10.1109/ICASID.2009.5276948

12. Robots.txt analysis, https://webmaster.yandex.ru/tools/robotstxt/, last accessed 2018/08/29.
13. robots.txt Tester, https://www.google.com/webmasters/tools/robots-testing-tool, last ac-

cessed 2018/08/29.
14. Blocking URLs with a robots.txt file, https://support.google.com/webmasters/an-

swer/6062608, last accessed 2018/08/29.
15. Robots meta tag and X-Robots-Tag HTTP header specifications, https://develop-

ers.google.com/search/reference/robots_meta_tag, last accessed 2018/08/29.

216

Archival Information Systems:
New Opportunities for Historians

Irina Krayneva, Sergey Troshkov

A.P. Ershov Institute of Informatics Systems,
Lavrentiev ave. 6, 630090 Novosibirsk, Russia

cora@iis.nsk.su, kamronis@xtech.ru

Abstract. This paper presents a brief summary of the twenty years of
research carried out at the A. P. Ershov Institute of Informatics Systems
SB RAS in the area of developing electronic archives for heterogeneous
documents. The phenomenon of electronic archives emerged and has been
developing as part of the Novosibirsk school of informatics, which has
always been oriented towards the contracting of social services. In the
1970s, the first social service projects launched by the Institute were ed-
ucational initiatives for school education, accordant with the well-known
thesis of Andrey Ershov: “Programming is the second literacy”. Over the
years, the IIS SB RAS has completed a range of projects on digitizing
historical and cultural heritage of the Siberian Branch of the Russian
Academy of Sciences: the Academician A. P. Ershov Electronic Archive,
SB RAS Photo Archive and the SB RAS Open Archive. This work has
become especially relevant in view of the ongoing restructuring of the
Russian academic science.

Keywords: A.P. Ershov digital archives digital historical factography
Drupal.

1 Introduction

The current information boom has brought up a number of challenges dealing
with the problem of relevance of the information produced by a researcher; pro-
viding quality information to the scientific community has become a cornerstone
task. James Nicolas Gray, an American researcher in computational systems and
a Turing Award holder, suggested the concept of the fourth paradigm of research,
a grid-technology based science that uses big data. Even though Gray and his
followers stress the importance of systematization and free access to scientific
archives (including experimental data and modeling results), the notion of a
big virtual archive for humanities studies is no less relevant [1]. This highlights
the relevance of free access to information since scientific workers are known to
benefit from information and communication technologies (ICT) [2].

The demand for novelty and relevance of scientific research as a socio-cognitive
institute stresses the need for a better and quicker access to archives, libraries,
museums and other types of heritage content. Informatization as well as com-
mercialization of state-run archives in Russia was propelled even further by the

217

emergence of the Internet in the 1990s. Evidently, there should be alternative
options of free access to information as well. The IIS SB RAS research team
was among the first to complete several projects on the creation, scientific inter-
pretation, organization and development of the methodology of digitizing scien-
tific heritage; our experience can be viewed as technology-intensive, scientifically
based, successfully tested and implemented [3].

Interdisciplinary collaboration of specialists in human studies and IT at the
dawn of the Internet relied predominantly on the concept of open scientific com-
munications. In essence, this is a cluster of civil society supported by profes-
sionals. Museums, libraries, universities and research institutions getting access
to the Internet boosted user experience and the emergence of Internet-oriented
resources: published museum collections, online library systems and catalogs,
archival tools for research and reference, and select collections. For instance, in
the Novosibirsk Scientific Center, projects on the creation of electronic archives
of different types of documents became possible as part of the project called
“The Internet of Novosibirsk Scientific Center” in 1994–1998, funded by the
Soros Foundation, Russian Foundation of Basic Research, and INTAS. As re-
sult, research institutions and other organizations of the NSC got free access to
the Internet.

2 Tools

The emergence and distribution of special tools – information systems (IS) – fa-
cilitates the development and systematization of information in professional com-
munities, including those engaged in humanities studies [4]. Electronic catalogs
and knowledge bases became an integral part of scientific community processes
by the end of the 20th century. Specialized information systems appeared aimed
at presenting, storing and organizing historical sources and texts, i.e. history-
oriented IS’s. We understand information systems as a complex of technical,
program, organizational and financial utilities as well as the personnel capable
of working with this complex and complete the project [5]. The minimal staffing
of such projects, based on the experience of the IIS SB RAS, is about 10 peo-
ple, including programmers, historians, information specialists (operators) and
translators.

Specialists from Perm State University whose interest is the application of
the IT in humanities suggested a specification of history-oriented systems [6].
Of special interest are systems containing, in addition to historical information,
a set of research tools (search, analytics, text recognition, etc.). We see two ap-
proaches to creating the IS’s: history-oriented, when a system is based on an
array of documents from a single source, and the system is modeled according to
the structure of this source, and problem-oriented, when a model is built based
on the structure of the studied field of knowledge. According to this classification,
the systems created in the IIS SB RAS are history-oriented. The SB RAS Photo
Archive integrates two sources on its platform: scans of photographic documents
and archives of the Nauka v Sibiri (Science in Siberia) newspaper. There is an

218

organic and thematic connection between the two sources, because the news-
paper staff reporters took many of the photos. In addition to documents, the
A. P. Ershov’s Electronic Archive and the SB RAS Open Archive contain pho-
tographs and research papers. We consider our IS’s source-oriented for another
reason, too: the archives contain images (scans) of original documents with tran-
scriptions supplied as an additional feature allowing to read compromised and
poorly legible scans. Finally, our IS’s support remote workspaces for document
description.

3 Analogies and Problems

Currently there are many resources created for the accumulation of historical
and cultural heritage in a digital format. Millions of photographs from the LIFE
photo archive, stretching from the 1750s to today, are now available for the first
time through the joint work of LIFE and Google (2008). Digital collections of
the Science History Institute (https://digital.sciencehistory.org/) includes 6,508
digitized items: artifacts, photographs, advertisements, letters, rare books. Li-
brary of Congress (https://www.loc.gov/) and digital collections of UNESCO
(https://digital.archives.unesco.org/en/collection) are the most impressive ones.
Though, they have no available catalogue to help determine the connections be-
tween documents.

One of the main problems faced by the creators of these projects was financ-
ing. In 2015, UNESCO launched a fundraising project to digitize the archives of
the Organization belonging to its predecessors, including the League of Nations
International Institute for Intellectual Cooperation. Two years later, thanks to
the generous support of the Japanese government, UNESCO launched a major
two-year initiative. In partnership with the digitization company Picturae BV,
a laboratory was established at the site of UNESCO Headquarters in Paris in
February 2018.

Financing a project is a painful question for us as well. Russian foundatians
are willingly provide finance for the launch of the project but not for its sup-
port and development. At present, the attraction of sponsor funds has not been
undertaken, since the project A. P. Ershov’s Archive has been practically com-
pleted. The remaining digital projects of the Institute of Informatics Systems of
the SB RAS are carried out within the framework of the government assignment
to the Institute on the theme “Research of the fundamentals of data structur-
ing, information resources management, creation of information and computing
systems and environments for science and education” The purpose of this study
is the development of automated support methods for ontology design. The bot-
tleneck in this direction so far is the creation of more accurate search tools, text
recognition tools, involving qualified personnel.

219

4 Technology and Method of Digital Historical
Factography

As part of Internet-oriented professional IS’s, the IIS SB RAS team has devel-
oped a technology and method of electronic historical factography, which allows
working with arrays of heterogeneous documents and their further structuring
by establishing connections between the entities reflected in the documents. The
Internet resources developed at the IIS focus on the materials on the history
of science and technology in Siberia – the Siberian Branch of the Russian (for-
merly Soviet) Academy of Sciences. Electronic historical factography dates back
to 1999, when the IIS team began working on an automated information sys-
tem for the creation and support of the Academician Andrey P. Ershov digital
archive.

The method of electronic, or digital, historical factography consists in the
publication of historical sources in Internet-oriented information systems ac-
cording to the rules of working with conventional archival documents: properties
such as the document source, type, author, addressee (either a person or an or-
ganization), dates, geographic data, etc., must be provided. The IS makes use
of the technology allowing to establish connections between these entities of the
subject field. Document quoting s from a digital archive is possible by means of
web links as well as by indicating a specific volume and page of the archive (this
is the case with the A. P. Ershov Electronic Archive and with other archives of
the SB RAS where documents originate from the state-run storages).

While working on the first academic project of an Internet-oriented IS re-
ferred to as the A. P. Ershov Electronic Archive (http://ershov.iis.nsk.su), the
IIS SB RAS team developed original software tools based on the client-server
technology using predominantly Microsoft solutions. The archivist’s workspace is
written in Perl [7]. The specialized IS was created not only as a means of making
a body of documents available to science, but also as a tool allowing a historian
of science to perform a range of research tasks, such as organizing historical
documents, providing remote access to these documents, keyword-based queries
search, accumulating thematically connected sources from different storages, sci-
entific description, etc. Almost all the documents from the Ershov’s archive were
digitalized with the exception of some personal letters.

The software tools created at the IIS SB RAS ensure stable functioning and
continuous maintenance of virtual content. The developers wanted the visual
archive in the public interface to correspond to the physical archive created
by A. P. Ershov. He formed the cases on the thematic-chronological and the-
matic principles. His approach remained almost unchanged. Some corrections
were made in order to remove duplicates, build chronology, establish authorship
and dating of documents. The archive, formed by A. P. Ershov, was supple-
mented by some new documents received from the state archives. The electronic
version supports two types of systematization: on the basis of cases and on the
basis of thematic-chronological approach in the form of a corresponding catalog.
Document types that were digitalized included letters, drafts of scientific arti-

220

cles, photos, reports, diaries, paperwork documents, reviews on scientific works,
etc.

The Electronic Archive framework also contatins documents on the history of
IIS SB RAS, VTNK ”Start” (Temporary scientific and technical team ”Start”)
and the A.P. Ershov Informatics Conference (PSI’). The pupils of the correspond-
ing member of the USSR Ac. of Sci. S. S. Lavrov (1923-2004, St. Petersburg),
transferred his archive to Novosibirsk. It is also presented on the platform of
Ershov’s archive.

The use of digitized documents is of communicational as well as of ergonom-
ical importance, since many researchers with year of hands-on experience with
archives suffer from the chronic disease caused by long-term contact with old
paper, glue and dust, which at times prevents them from working directly in
the archives. From this point of view, digital archives are safe and convenient to
use. During the existence of the archive in the public domain, we did not receive
objections to the publication of any documents.

5 Expansion of Project Activities

Upon the completion of the A. P. Ershov Electronic Archive project, in the run-
up to the 50th Anniversary of the Siberian Branch of the RAS, an initiative
group from the IIS SB RAS led by Dr. Alexander Marchuk began working on a
new project – the SB RAS Electronic Photo Archive (http://www.soran1957.ru)
(2005–2009). The project united a large number of separate photograph collec-
tions on the history of science in Siberia into a single volume of documents,
which came from photoreporters, organizations (such as the SB RAS Museum,
SB RAS Expo Center, SB RAS Press Center as well as a number of research
institutes), and private collections. A landmark event in the history of Novosi-
birsk of the 20th century was setting up a town of science: Akademgorodok
of Novosibirsk. We owe the existence photographic records of Akademgorodok
from the moment of searching for a location for the new town to the foresight of
Mikhail Lavrentiev, its founding father, who ordered that a cinema and photo-
laboratory be organized and invited Rashid Akhmerov (1926–2017) to be the
staff photographer.

Especially for the Photo Archive a new IS was created– the SORAN1957
system [8]. It supports collecting, structuring and digital publication of histor-
ical data and documents using specially developed software and organizational
mechanisms. The SORAN1957 includes a system of structured data reflecting
real-world entities and their relationships. Methodologically, the system is based
on the ideology of Semantic Web. This approach allows structuring data accord-
ing to an ontology. An ontology is a formal specification of a shared conceptual
model – an abstract model of the subject area describing a system of its con-
cepts. A shared model is a conventional understanding of a conceptual model by
a certain community (a group of people). “Specification” is an explicit descrip-
tion of the system of concepts, and “formal” means that the conceptual model
is machine-readable. An ontology consists of classes of entities of a subject area,

221

properties of these classes, connections between these classes and statements
made up of classes, their properties and connections. The resulting software
tools enable input and editing of data as well as import of data from other
sources, such as newspapers.

The SORAN1957 system features a public interface to the database and
to the photographic documents. Users can study photographs, documents and
database facts and their interconnections. For instance, by using text search the
user can find a person of interest and their personal data, linked photographs,
organizations (for instance, where that person worked), titles, etc. A nonspecific
information ontology is used here, which allows avoiding the duplication of in-
formation contents in general-purpose and specialized information systems. The
system is based on the Semantic Web concept and .NET technologies and can
be installed on a server or an end user machine.

Our experience with the projects described above allowed us to cover a
broader range of historical sources. In 2012, an integrative project of the SB
RAS Presidium Fundamental Research, “The SB RAS Open Archive as a sys-
tem of presenting, accumulation and systematization of scientific heritage” began
(2012–2014, http://odasib.ru/). In this project, IIS SB RAS collaborated with
a number of research institutes of the Siberian Branch specializing in human-
ities. Currently the SB RAS Open Archive contains 17 collections with 54,362
document scans (as of March 28, 2018). Documents added to each collections
are systematized based on the internal logics of the content type. The system al-
lows the creation of topic-based collections and sub-collections containing linked
sources.

6 “Migration” Policy

It follows from the above descriptions of the projects that for each of them an
original information system was developed, supported by grants from funds and
sponsors (proprietary software). Some experts predicted over a dozen years ago
that “in the future applied programs might not be developed but ‘assembled’
from ready-made components, a job that will not require a programmer but a
qualified user who can formulate what he/she wants to receive at the output
in the terms understood by the component management system. The center of
gravity will shift from programming to design” [9]. Real life, however, has turned
out to be much more complicated, and the key word here is a “qualified user.”

In 2001, the open-source software expanded with the Drupal content man-
agement system (https://www.drupal.org/), developed and supported by pro-
grammers from all over the world [10]. The Drupal architecture allows for the
construction of various web-applications like blogs, news sites, archives and so-
cial nets. Drupal contains over 40,000 modules that can be used to create an
application necessary for solving the developers’ problems. To achieve this, how-
ever, the developers need to learn how to find and install the necessary modules
and how to write their own modules to solve highly specialized tasks. This means

222

that using information technologies by humanities-minded people is not a trivial
task, and help from programmers is welcome if not a must.

In 2016, the A.P. Ershov Electronic Archive was migrated to the Drupal plat-
form (the graduate project of Sergey N. Troshkov, Mechanics and Mathemat-
ics Department, Novosibirsk State University, supervised by Doctor of Physics
and Mathematics Alexander G. Marchuk and programmer Marina Ya. Philip-
pova) [11, ?]. Parenthetically, following the migration of the Electronic Archive
was the migration of the Library system developed by Ya. M. Kourliandchik for
the A.P. Ershov Programming Department in the mid-1980s. Until recently, the
latter system had been used by the IIS SB RAS but as it was not written in
the client-server architecture and both the database and application were on in-
stalled the same computer, it could not be accessed from another computer [13].

The experience of developing the IS has revealed two approaches to project
work. The approach to the creation of the A. P. Ershov’s Electronic Archive
is engineering: its creators used quite complex tools. Nevertheless, they have
created a convenient and multifunctional system in the service and user inter-
faces. Achieving a workable version was a one-step process and did not require
significant additions to the working tools. Changes and additions to the system
architecture were made imperceptibly for operators and users, eliminating the
loss or duplication of data. The tools were improved in the direction of increas-
ing the speed of access to the database. All the developers of this system are
currently the leading specialists of foreign software companies.

The approach of the creators of IS SORAN1957 and Open archive SB RAS
can be called as researching. The system was developed with the help of com-
plex Semantic Web tools. At the same time there was a search for the most
optimal solutions in the creation of software. Variants of platform solutions have
repeatedly changed, which sometimes led to duplication and loss of information,
slowed down the work of operators, for some time stopped the filling of IS. The
creators of the IS “Open archive SB RAS” did not provide short links to scans
of documents.

7 Conclusion

An important scientific problem of electronic archives is the reliability of con-
tent. Professional historians believe that the researcher needs to see the original
document in order to get the most complete picture of it. But the existing archiv-
ing system cannot provide a wide coverage of valuable archives. The creation of
professional IS involves the responsibility of its developers for the quality of re-
production of documents. Modern means of representation allow the researcher
to get enough information about the source. It is no coincidence that facsimiles
and scans of rare books are being actively published.

Since the mid-1980s, the European community has launched projects sup-
porting specialists engaged in the preservation, conservation and dissemination
of knowledge about the heritage with the help of digital reality: Framework Pro-
gramme for Research & Technological Development FR1, 1984–1987, continued

223

until 2013, and then HORIZON 2020 became its successor [14]. In addition to
the programmes supporting appropriate research, special-purpose centers were
set up in some countries like the U.K. and France to provide the long-term stor-
age of software and access to it [15, 16]. Moreover, the European Commission is
planning to launch a single European Open Science Cloud for storing, exchang-
ing and reusing research data in a variety of areas and support its infrastruc-
ture. In Russia, apparently, the critical mass required for making such decisions
at the national level has yet to be achieved. The Russian State Archives have
begun publicizing their meetings and reference apparatus fairly recently, later
than other institutions keeping historical sources. The Archive of the Russian
Academy of Sciences (RAS) is the umbrella association for launching a universal
corporate resource (http://www.isaran.ru). The Science Archive of the Siberian
Branch, RAS, however, neither digitizes its collections nor is represented in the
Internet. This is an urgent issue of the SB RAS and Russian Ministry for Science
and Education.

The structural changes undergoing in the RAS Siberian Branch in connec-
tion with reforming the Russian Academy of Sciences have so far ignored the
SB RAS archival activity. Therefore, the future of the SB RAS Science Archive
is uncertain. This most valuable collection of documents on the development
of Siberian science is in danger of neglect because the SB RAS Presidium has
no funds to maintain or, more importantly, to develop it. The SB RAS Science
Archive established simultaneously with the RAS Siberian Branch in 1958 pos-
sesses a richest array of representative sources on the history of science in Siberia.
It includes 86 library collections and 52,219 files including 9,356 personal files.
Until now, the Archive’s library collections have not been digitized for profes-
sional or public purposes, and the Archive has no electronic resources of its own
(even though the SB RAS State Public Scientific-Technical Library has the In-
ternet connection). With a view to preserving the unique historical documents,
we need to digitize them and establish permanent repositories of datasets using
cloud technologies. Within the framework of the project SB RAS Open Archive,
which is in line with the all-Russia trend for the extensive use of information
and communication technologies in the cultural and scientific spheres, the IIS
has pioneered the organization of archival work in the RAS Siberian Branch. We
expect that our experience will be in demand.

8 Acknowledgements

Natalia Cheremnykh, Alexander Marchuk, Vladimir Philippov, Marina Philip-
pova, Mikhail Bulyonkov, Andrey Nemov, Sergey Antuyfeev, Konstantin Fe-
dorov, Irina Pavlovskaya, Alexander Rar, Natalia Poluydova, Igor Agamirzian,
Ivan Golosov, Irina Adrianova. The study was carried out with the financial sup-
port of the Russian Foundation for Basic Research and the Novosibirsk Region,
project 19-49-540001.

224

References

1. Lynch C. : Jim Gray’s fourth paradigm and the construction of the scientific record.
The Fourth Paradigm: Data-Intensive Scientific Discovery. T. Hey, S. Tansley, K.
Tolle (eds.), pp. 175–182. Redmond, Washington, Microsoft Research (2009)

2. Mirskaya E.Z. : New information technologies in Russian science: history, results,
problems and prospects. Science research : coll. Proc. A.I. Rakhitov (ed.). Moscow,
INION RAN, pp. 174–200. (2011)

3. Krayneva I.A.: Electronic Archives on the History of Science. Vestnik NSU Series:
History, Philology 12 (1), 76–83. (2013)

4. Deit Chrictofer. J. An Introduction to Database System. M. : Dialektika, 1998. 1070
p.

5. ISO/IEC 2382:2015 Information technology – Vocabulary: Information system – An
information processing system, together with associated organizational resources
such as human, technical, and financial resources, that provides and distributes
information. http://www.morepc.ru/informatisation/iso2381-1.html#s

6. Gagarina D.A, Kiryanov I.K., Kornienko S.I. : History-oriented information systems:
”Perm” project experience. Perm University Herald. History (16), 35 (2011).

7. Srinivasan S. Advanced Perl Programming. O’Reily Media Inc. 1997. 404 p.
8. Marchuk A.G., Marchuk P.A. : Archival factographic system. Digital Libraries: Ad-

vanced Methods and Technologies, Digital Collections. In : Proceedings of the XI
All-Russian Scientific Conference (RCDL–2009), pp. 177–185 (2009)

9. Evtushkin A. : Dialectics and life of information technology. Computerra, 21 aug.,
31 Available at: http://old.computerra.ru/197835/ (2001)

10. Mercer D. Drupal 7. Birmingham-Mumbai: Packt Publishing. 2010. 403 p.
11. James T. Migration to Drupal 7. Birmingham-Mumbai: Packt Publishing. 2012.

145 p.
12. Troshkov S.N. : Migrating Web Applications to the Freely Distributable Open

Source Software. Bachelor’s final qualifying work. Novosibirsk, NSU, 25 p. Scientific
adviser M.Y. Fillipova, programmer IIS SB RAS. Authors archive (2016)

13. Troshkov S.N. : On Expirience in Migrating Applications to the Freely Dis-
tributable Open Source Software. Vestnik NSU Series: Information Technologies,
16 (2), 86–94. (2018)

14. Digital Heritage. Progress in Cultural Heritage: Documentation, preservation and
protection. 2016. Nicosia, Cyprus, Oct. 31–Nov.5. In : Proceedings6th International
conference, EuroMed, Part II. LNCS, vol. 10058, pp. V–VII (2016)

15. Doorn-Moiseenko T.L. : Electronic Archives and Their Role in the Development
of the Information Infrastructure of Historical Science. In : Vorontsova, E.A., Aiani,
V.Yu., Petrov, Yu.A.(eds.) Role of Archives in Information Support of Historical
Science: a collection of articles, pp. 101–117. Moscow, ETERNA (2017)

16. Schurer K., Anderson S.J. with the assistance of Duncan J.A. : A Guide to Hictor-
ical Datafiles Held in Machine-Readable Form. Assocoation for History and Com-
puting. Cambridge, 339 p. http://www.aik-sng.ru/text/bullet/8/89-95.pdf (1992)

225

A Logical Approach to the Analysis of Aerospace Images

Valeriy Kuchuganov, Denis Kasimov, Aleksandr Kuchuganov

Kalashnikov Izhevsk State Technical University, Izhevsk, Russian Federation

kuchuganov@istu.ru, kasden@mail.ru, Aleks_KAV@udm.ru

Abstract. The paper proposes algorithms and software tools for the automatic
interpretation and classification of objects and situations on aerospace images
by structural-spatial analysis and iterative reasoning based on fuzzy logic and
expert rules of inference. During iterations, the decision tree is built, the
transition to local rules and additional features is carried out, and the ranges of
acceptable values are adjusted. Particular attention is paid to geometric features
of objects. Quantitative attributes are converted to qualitative ones for ease of
perception of results and forming decision rules. The results of the experiment
on the automatic identification of objects in the aerial image of an urban area
are given. The system is useful for automating the process of labeling images
for supervised learning and testing programs that recognize objects in aerospace
images.

Keywords: Image Analysis, Object Detection, Object Features, Decision Rule,
Decision Tree, Ground Truth, Image Labeling

1 Introduction

Due to the rapid growth in the volume of aerospace monitoring data, there is an ur-
gent need for the tools that automate the extraction of knowledge from images, the
identification and structured description of image objects.

In [1] the language for the description of (deformable) logical models of image ob-
jects is proposed, which is based on the PROLOG III language. The language is quite
simple and transparent due to the use of the built-in predicates "line", "circle" and
"texture", which are unified using a set of functions that dynamically extract low-level
features from the image. The list of such functions includes Harris angle detector,
LBP operator, support vector machine, spatial functions of the GEOS library, etc. The
logical model of an object is a set of rules (statements). The found object satisfying
the logical model is estimated by the function of energy that takes fuzzy values. The
work of the interpreter is based on the classical search with returns and cutting off
unpromising branches of the logical inference by checking the spatial constraints,
using the A* algorithm and other popular strategies. The described approach is
promising, but for a wide practical application there is a need to expand the set of
built-in predicates and feature extraction functions, as well as significantly increase
the speed of the object detection process.

226

Currently, the GEOBIA (Geographic Object-Based Image Analysis) approach [2]
is actively being developed in the field of automation of aerospace image analysis.
Within this approach, the processing of areas obtained as a result of automatic color
segmentation and their classification based on rules set by an expert is implemented.
There is an extensive experience of using the object-oriented approach for solving
various tasks: analysis of changes in territories [3], classification of urban garden
surfaces [4], automatic detection of built-up areas [5], estimation of crop residues [6],
etc.

The work [7] is interesting by the proposed method of obtaining the object classifi-
cation rules. The rules are formed on the basis of supervised learning: using manually
prepared training examples, an automatic synthesis of a decision tree is performed,
from which the most reliable classification rules are then manually extracted. The
process of classifying objects in the image includes color image segmentation, calcu-
lation of spectral and geometric characteristics of the obtained segments, and classify-
ing the segments into the target object categories by checking the rules that test fea-
ture values. In general, the considered work is aimed at maximizing the effectiveness
of the final stage of image analysis, which is associated with decision making. It
should be noted that the overall effectiveness of the analyzing system is determined
not only by this factor, but also largely depends on the quality of image segmentation,
the completeness of the set of analyzed features and the degree of consideration of the
environment of objects.

In [8], an ontological approach to representing the knowledge of GEOBIA-systems
is proposed. Based on the formalism of description logics, the relationships between
the target categories of objects and their patterns in images are described. From these
logical descriptions, it is then easy to extract the rules for assigning image objects
provided by the segmentation procedure to the desired categories. The advantage of
this approach is that the knowledge of experts is transferred to the analyzing system in
a more systematic way, the subjectivity of the decision rules is leveled, and the possi-
bility of using automatic means for checking the consistency of the knowledge base
appears. Unfortunately, the approach does not specify any form of contextual analysis
of objects. Identification relies entirely on spectral and geometric characteristics of
individual objects (NDVI, squareness, etc.). The authors noted that automatic seg-
mentation did not always perfectly delineate the boundaries of objects, especially in
the case of shadows and trees. In this regard, the existing free database of cartograph-
ic data was used to refine the results of segmentation.

In existing implementations of the GEOBIA approach, relatively simple classifica-
tion rules are applied that do not take into account the context of an object. The deci-
sion making mechanism is built on the production knowledge model. A significant
drawback is the lack of tools for complex analysis of the shape of objects. Under con-
ditions of imperfection of automatic image segmentation, it is not always possible to
achieve high identification rates.

The purpose of this work is to develop mechanisms for the automatic interpretation
and classification of objects and situations on aerospace images by structural-spatial
analysis and iterative reasoning based on fuzzy logic and expert rules of inference.
During iterations, the decision tree is built, the transition to local rules and additional

227

features is carried out, and the ranges of acceptable values are adjusted. Particular
attention is paid to geometric features of objects. Quantitative attributes are converted
to qualitative ones for ease of perception of results and forming decision rules.

2 Formation of a set of features

At the stage of image preprocessing, color segmentation and approximation of the
edges of regions by circular arcs and straight line segments are performed. The
algorithms of image approximation and extraction of basic features used by us are
discussed in detail in [9]. The result of the stage is the set of color regions represented
as the cyclic lists of straight line segments and circular arcs:

REGIONS = {R1, …, Rn}, n , Ri = (Colori, Edgei), Edgei = (ei1, …, eik), k ,
j [1..k] LineSegment(eij) CircularArc(eij), Connected(eik, ei1), j [1..k-1] Con-

nected(eij, eij+1),

where Colori is the region’s average color; LineSegment(e) is true if e is a straight line
segment; CircularArc(e) is true if e is a circular arc; Connected(e1, e2) is true if any
endpoints of e1 and e2 are the same.

Many of the obtained regions correspond unequivocally to the target objects of the
image or their structural fragments (a typical example is a roof slope of a building).
On the other hand, it is not possible to avoid regions that are incorrect to some degree:
a very tortuous border, the capture of a part of a neighboring object, etc. In a number
of researches [10, 11], it is noted that the inaccuracy, insufficiency or excessiveness
of automatically obtained color segments is a serious problem for object-oriented
approaches, preventing them from achieving a high level of recognition. In view of
this, the subsequent stages of processing and analysis have been designed in such a
way as to minimize the influence of this negative factor.

Next, the adjacency graph of the regions and sections of their edges is constructed.
Each node of the graph corresponds to a certain region of the image. Arcs of the graph
represent relationships between the regions:

(BegNode, EndNode, R, V, AdjChains),

where BegNode is the number of the node from which the arc exits; EndNode is the
number of the node to which the arc enters; R is the type of relationship between the
regions: IsNeighbourOf, Contains, IsInsideOf; V is the vector that connects the re-
gions’ centroids, showing relative orientation and distance; AdjChains is the set of
adjacent chains of the regions’ edges.

To describe the image regions, the following features are calculated:

1. Significant elements of the region’s edge:

 SignifElsi = {e | e Edgei L(e) / P(Edgei) ≥ },

where L is the length calculation function, L(e) R+, P is the perimeter calculation
function, P(Edgei) R+, is a threshold, [0, 1].

228

2. Significant line segments: SLi = {e | e SignifElsi LineSegment(e)}.
3. Straightness of the region’s edge:

)(

)(

)(
iEdgeP

iSLe
eL

iRssStraightne .

4. The presence of three sides of a rectangle:

)()),(),,(,|
~
|,~,~(,, iEdgedesHas3RectSicbNearbaNearcacbbaiSLcba

where Near is true if the elements are located relatively close to each other; ~ and
|
~
| are the relations of fuzzy perpendicularity and parallelism that allow a slight
deviation of the angle from 90 and 0 , respectively.

5. The presence of significant perpendicular line segments (Has2PerpLines).
6. Area, converted to a relative form through clustering.
7. Average width (AvgWidth), calculated on the basis of creating cross sections and

clustering their lengths. The calculated absolute value is converted to a relative
form, namely, it is considered depending on the size of the region.

8. Elongation of the region: Elongation(Ri) = min(a, b) / max (a, b),
where a and b are the lengths of the sides of MinBoundRect(Ri) – the minimum
rectangle that covers the region Ri.

9. Squareness of the region: Squareness(Ri) = Area(Ri) / Area(MinBoundRect(Ri)),
where Area is the area calculation function, Area(Ri) R+.

10. Circleness – the ratio of the region’s area to the area of a circle of the correspond-
ing radius.

11. Tortuosity of the region’s edge:

 Tortuosity(Ri) = SignChangeCount(Edgei) / P(Edgei),

where SignChangeCount is the number of changes of the sign of the element incli-
nation angle when traversing the edge.

12. Density of contour points: ContourPointDensity(Ri) = |ContourPoints(Ri)| / Ar-
ea(Ri),
where ContourPoints is the function that detects contour points in the given region
of the image.

The last feature characterizes the texture of the region: if the value is small, then
the region is homogeneous and smooth, otherwise it has a complex texture.

It should be noted that values of all features are relative. This ensures their invari-
ance to different types of terrain and shooting conditions.

Quantitative values of the features are translated into qualitative form in order to
simplify the process of forming decision rules and perception of the analysis results.
For most features, it is convenient to operate with values from the following list:
Small, Medium, Large, VeryLarge. For the Color feature, it is advisable to use the
following values: Green, YellowedGrassColor, Dark, VeryDark, etc. Conversion of

229

values from the quantitative form to the qualitative one can be based on a simple par-
tition of a value range into several subranges. However, a more flexible approach is to
assign membership functions in accordance with the principles of fuzzy sets [12]. The
second method is more laborious and time-consuming to set up, but the costs pay off
to some extent, since some of classification errors associated with a slight violation of
range boundaries are eliminated. At present, approaches are being developed [13, 14],
aimed at simplifying the fuzzification process, seeking to eliminate subjectivity and
reduce the share of manual labor in the creation of membership functions.

To facilitate the user's process of determining the ranges of qualitative values, the
system has a tool for constructing histograms of the distribution of numerical values
of the features. Fig. 1 shows a program window in which the Straightness feature is
examined.

Fig. 1. Interface for converting quantitative values of the features into qualitative ones: (a) the
initial equal ranges; (b) the target ranges Small, Medium, Large, and VeryLarge

230

Initially, the histogram is built with a large number of equal ranges (Fig. 1-a) to
give the user a general idea of the shape of the distribution. The task of the user is to
reduce the number of ranges to the required number of qualitative values of the
feature. For example, in Fig. 1-b, the user has defined ranges of four qualitative
straightness values that he considers sufficient for classification.

By clicking on any bar of the histogram, the system highlights all the color areas in
the image for which the feature value falls within the range corresponding to this bar.
This feature helps the user to evaluate the correctness of the resulting ranges.

The qualitative values of the features determined in the manner described are then
used to specify the decision rules. During the interpretation of the rules, the
quantitative values are fuzzified using simple built-in trapezoidal functions, which are
automatically scaled to the width of the user-defined ranges.

3 Formation of decision rules

Decision rules are divided into the following types:

─ rules that analyze image regions in isolation from other regions, classifying the
most reliable objects;

─ rules that consider aggregates of adjacent regions, classifying less reliable objects
and refining previously detected objects.

Consider some rules of the first type, applied at the beginning of the object classi-
fication stage:

Object Category: Building.
General requirements: (Color(R) Green) (Color(R) VeryDark) (Area(R) ≥

Medium) (Elongation(R) Medium) (AvgWidth(R) ≥ VeryLarge)
(ContourPointDensity(R) Medium) (R2 (Color(R2) = Green Contains(R,
R2)).

Variants:

─ IF (Straightness(R) ≥ VeryLarge) THEN Building(R, 1.0).
─ IF (Squareness(R) ≥ Large) (Has3RectSides(R) Has2PerpLines(R)) THEN

Building(R, 1.0).
─ IF (Straightness(R) ≥ Large) (Has3RectSides(R) Has2PerpLines(R))

(Squareness(R) ≥ Medium) (Tortuosity(R) Medium) THEN Building(R, 1.0).
─ IF (Straightness(R) ≥ Large) (Has3RectSides(R) Has2PerpLines(R)) (Tortu-

osity(R) Medium) THEN Building(R, 0.7).
─ IF (Squareness(R) ≥ Large) THEN Building(R, 0.5).
─ IF (e R.Edge L(e) ≥ VeryLarge) THEN Building(R, 0.5).

Object Category: Shadow of Building.
General requirements: (Color(R) = VeryDark).
Variants:

─ IF (Straightness(R) ≥ VeryLarge) THEN ShadowOfBuilding(R, 1.0).

231

─ IF (Straightness(R) ≥ Large) THEN ShadowOfBuilding(R, 0.8).
─ IF (Straightness(R) ≥ Medium) (Tortuosity(R) Large) THEN

ShadowOfBuilding(R, 0.6).

When a rule is triggered, the image region obtains a classification variant with the
degree of reliability specified in the rule’s consequent. The reliability value is set by
the expert.

The rules of the second type are repeatedly applied to the results of the previous
classification steps, while new information is added. Below is an example of one of
these rules:

Object Category: Building near ShadowOfBuilding.
IF ShadowOfBuilding(R2, m), Adjacent(R, R2) (Straightness(CommonEdge(R,

R2)) ≥ Large) (Orientation(R2, R) SolarAngle) … THEN Building(R, m),
ShadowOfBuilding(R2, m + 0.2),
where m is the reliability of classification of the region R2 before executing the rule.

The classification stage has an iterative principle of organization. Different sets of
rules can be used at different iterations. Namely, when setting rules, the expert can
specify on which iterations they can be applied. This principle makes it possible to
implement various image analysis strategies. For example, the rules used in the i-th
iteration can serve the purpose of detecting all potential objects, ensuring maximum
recall rate and not worrying much about the precision. Then the elimination of false
objects can be made on the i+1 iteration by specifying additional features, checking
the contextual rules and adjusting the ranges of acceptable values.

In our experiments, iterations were used as follows: (1) detection of the most
reliable objects; (2) classification of less reliable objects with the condition that they
are adjacent to reliable objects; (3) identifying buildings near shadows the source of
which has not yet determined; (4) detection of buildings and roads among the
remaining regions on the basis of weakened requirements; (5) classifying the
remaining regions into the categories of trees, grass, and roads (what they are more
like, depending on tortuosity and color).

The results of rule execution are organized as a decision tree, the general structure
of which is shown in Fig. 2. Each color image region has its own decision tree. Of all
the classifications derived, the one with the highest reliability is chosen as the result.
Similarly, when interpreting rules of the second type, the neighbors are substituted in
descending order of the degree of compliance with the specified requirements.

Fig. 2. Decision tree structure

232

4 Experiment

An experiment on the automatic classification of objects was conducted on an urban
area aerial image taken from Inria Aerial Image Labeling Dataset [15]. Fig. 3 shows
examples of the work of our approach and two other approaches in the literature.

Fig. 3. A visual comparison of the results: (a) the original image; (b) FCN results [15]; (c) MLP
results [15]; (d) our results

The dataset [15] contains the building ground truth, providing an opportunity to as-
sess the quality of building identification using the Intersection over Union (IoU) and
Accuracy [16, 17] metrics. These measures are calculated as follows:

 IoU = |A G| / |A G|, Accuracy = |A G| / |A|,

where A is the set of pixels that the program has classified as pixels of target objects;
G is the set of pixels that are related to target objects in the ground truth.

As a result of automatic analysis of the image that has the size 5000×5000 and con-
tains a total of 793 buildings, the following performance values were obtained:

 IoU = 0.56, Accuracy = 0.83.

The values obtained can be considered satisfactory. It should be noted that the ap-
plied metrics work at the pixel level and require the most accurate determination of

233

the boundaries of buildings. In this paper, the desire for accurate detection of objects
was not put at the forefront. The most difficult to classify were small buildings par-
tially covered with trees, since their visible parts often do not have any distinctive
elements of geometric shape. Such situations require special analysis strategies. Neu-
ral network approaches [15] also experience some difficulties on this dataset (the
average value of IoU does not exceed 0.6), leaving considerable room for improve-
ment.

Practice shows that manual creation of the ground truth labeling for a single large
aerospace image takes more than an hour. And additionally it is necessary to prepare a
set of test images. The obtained estimate IoU=56% indicates the possibility of
reducing labor costs by half. The important point is that the developed system does
not require training and can be relatively easily reconfigured to other images. Thus,
the system can be useful for automating the creation of training datasets to expand the
scope of application of artificial neural networks.

5 Conclusion

Thus, the proposed approach to the analysis of aerospace images is based on
structural-spatial analysis and iterative reasoning with the use of fuzzy logic and
expert rules of inference. During iterations, the decision tree is built, the transition to
local (contextual) rules and additional features is carried out, and the ranges of
acceptable values are adjusted.

Particular attention is paid to geometric features of objects. The set of standard ge-
ometric characteristics (perimeter, area, squareness, circleness, elongation, etc.) of
objects has been supplemented with such more complex features as significant ele-
ments, straightness, presence of three sides of a rectangle, presence of significant
perpendicular line segments, tortuosity, average width, and contour point density.

The advantages of the logical approach to image analysis are the following: (a) ar-
gumentation of the decision; (b) the possibility of context-sensitive analysis; (c) au-
tomatic generation of descriptions of objects and scenes; (d) there is no need for train-
ing on labeled datasets; (e) relatively simple adjustment to the required type of images
and shooting conditions.

Based on the classification results, it is possible to form a training dataset for neu-
ral network type recognition systems. This may require some manual adjustment of
the results: removal of false objects and refinement of the edges of true objects. If
necessary, two-stage training can be organized. In this case, at the second level, with
the help of additional features, “specialization” is carried out according to the seasons
(winter, summer, autumn), types of terrain (agricultural grounds, highland), and other
parameters of shooting.

Further enhancement of the system is seen in the organization of flexible search
strategies, for example, specific techniques for large/extended/small objects. Due to
context-sensitive strategies, the system will automatically, depending on the content
of a particular area, adapt to the shooting conditions, the texture of objects, combina-
tions of objects of different categories, the nature of the edges between them, etc.

234

Acknowledgment

This work is supported by the Russian Science Foundation under grant No. 18-71-
00109.

References

1. Bychkov, I.V., Ruzhnikov, G.M., Fedorov, R.K., Avramenko, Y.V.: Interpretator yazyka
SOQL dlya obrabotki rastrovykh izobrazheniy [The interpreter of the SOQL language for
processing raster images]. Vychislitel'nyye tekhnologii = Computing technologies, 21(1),
49–59 (2016). (in Russian).

2. Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q.,
Meer, F., Werff, H., Coillie, F., Tiede, D.: Geographic Object-Based Image Analysis –
Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing
87, 180–191 (2014). doi: 10.1016/j.isprsjprs.2013.09.014

3. Souza-Filho, P.W.M., Nascimento, W.R., Santos, D.C., Weber, E.J., Silva, R.O., Siqueira,
J.O.: A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analy-
sis in a Tropical Watershed in the Southeastern Amazon. Remote Sensing 10(11), 1683
(2018). doi: 10.3390/rs10111683

4. Baker, F., Smith, C.: A GIS and object based image analysis approach to mapping the
greenspace composition of domestic gardens in Leicester, UK. Landscape and Urban
Planning 183, 133–146 (2019). doi: 10.1016/j.landurbplan.2018.12.002

5. Lehner, A., Naeimi, V., Steinnocher, K.: Sentinel-1 for object-based delineation of built-up
land within urban areas. In: Ragia L. et al. (Eds.). Geographical Information Systems The-
ory, Applications and Management. Third International Conference, GISTAM 2017.
Communications in Computer and Information Science, vol. 936, pp.1–18 (2019). doi:
10.1007/978-3-030-06010-7_2

6. Najafi, P., Navid, H., Feizizadeh, B., Eskandari, I.: Object-based satellite image analysis
applied for crop residue estimating using Landsat OLI imagery. International Journal of
Remote Sensing 39(19), 6117–6136 (2018). doi: 10.1080/01431161.2018.1454621

7. Antunes, R.R., Bias, E.S., Costa, G.A.O.P., Brites, R.S.: Object-Based Analysis For Urban
Land Cover Mapping Using The InterIMAGE And The SIPINA Free Software Packages.
Bulletin of Geodetic Sciences 24(1), 1–17 (2018). doi: 10.1590/s1982-
21702018000100001

8. Belgiu, M., Hofer, B., Hofmann, P.: Coupling formalized knowledge bases with object-
based image analysis. Remote Sensing Letters 5(6), 530–538 (2014). doi:
10.1080/2150704X.2014.930563

9. Kasimov, D.R., Kuchuganov, A.V., Kuchuganov, V.N., Oskolkov, P.P.: Approximation of
Color Images Based on the Clusterization of the Color Palette and Smoothing Boundaries
by Splines and Arcs. Programming and Computer Software 44(5), 295–302 (2018). doi:
10.1134/S0361768818050043

10. Lhomme, S., He, D.C., Weber, C., Morin, D.: A new approach to building identification
from very-high-spatial-resolution images. Int. J. Remote Sens. 30, 1341–1354 (2009). doi:
10.1080/01431160802509017

11. You, Y, Wang, S., Ma, Y., Chen, G., Wang, B., Shen, M., Liu, W.: Building Detection
from VHR Remote Sensing Imagery Based on the Morphological Building Index. Remote
Sensing 10(8), 1288 (2018). doi: 10.3390/rs10081287

235

12. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate rea-
soning—I. Information Sciences 8(3), 199–249 (1975). doi: 10.1016/0020-0255(75)90036-
5

13. Liao, T.W.: A procedure for the generation of interval type-2 membership functions from
data. Applied Soft Computing 52, 925–936 (2017). doi: 10.1016/j.asoc.2016.09.034

14. Dhar, S., Kundu, M.K.: A novel method for image thresholding using interval type-2 fuzzy
set and Bat algorithm. Applied Soft Computing 63, 154–166 (2018). doi:
10.1016/j.asoc.2017.11.032

15. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P. Can Semantic Labeling Methods Gen-
eralize to Any City? The Inria Aerial Image Labeling Benchmark. IEEE International Geo-
science and Remote Sensing Symposium, IGARSS 2017 (2017). doi:
10.1109/IGARSS.2017.8127684

16. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classifica-
tion tasks. Information Processing and Management 45(4), 427–437 (2009). doi:
10.1016/j.ipm.2009.03.002

17. Fernandez-Moral, E., Martins, R., Wolf, D., Rives, P.: A new metric for evaluating seman-
tic segmentation: leveraging global and contour accuracy. Workshop on Planning, Percep-
tion and Navigation for Intelligent Vehicles, PPNIV17 2017 (2017). doi:
10.1109/IVS.2018.8500497

236

Parallel Factorization of Boolean Polynomials�

Vadiraj Kulkarni1, Pavel Emelyanov2,3, Denis Ponomaryov2,3, Madhava
Krishna1,4, Soumyendu Raha1, and S K Nandy1

1 Computer Aided Design Laboratory, Indian Institute of Science, Bangalore 560012
{vadirajk,madhava,raha,nandy}@iisc.ac.in

2 Ershov Institute of Informatics Systems, Lavrentiev av. 6, 630090, Novosibirsk,
Russia

3 Novosibirsk State University, Pirogova st. 1, 630090, Novosibirsk, Russia
{emelyanov,ponom}@iis.nsk.su
4 Morphing Machines Pvt. Ltd

Abstract. Polynomial factorization is a classical algorithmic problem in
algebra, which has a wide range of applications. Of special interest is fac-
torization over finite fields, among which the field of order two is probably
the most important one due to the relationship to Boolean functions. In
particular, factorization of Boolean polynomials corresponds to decom-
position of Boolean functions given in the Algebraic Normal Form. It has
been also shown that factorization provides a solution to decomposition
of functions given in the full DNF (i.e., by a truth table), for positive
DNFs, and for cartesian decomposition of relational datatables. These
applications show the importance of developing fast and practical fac-
torization algorithms. In the paper, we consider some recently proposed
polynomial time factorization algorithms for Boolean polynomials and
describe a parallel MIMD implementation thereof, which exploits both
the task and data level parallelism. We report on an experimental eval-
uation, which has been conducted on logic circuit synthesis benchmarks
and synthetic polynomials, and show that our implementation signifi-
cantly improves the efficiency of factorization. Finally, we report on the
performance benefits obtained from a parallel algorithm when executed
on a massively parallel many core architecture (Redefine).

Keywords: Boolean Polynomials · Factorization · Reconfigurable Com-
puting.

1 Introduction

Polynomial factorization is a classical algorithmic problem in algebra, [8], which
has numerous important applications. An instance of this problem, which de-
serves a particular attention, is factorization of Boolean polynomials, i.e., mul-
tilinear polynomials over the finite field of order 2. A Boolean polynomial is one

� This work was supported by the grant of Russian Foundation for Basic Research No.
17-51-45125 and by the Ministry of Science and Education of the Russian Federation
under the 5-100 Excellence Program.

237

2 Vadiraj et al.

of the well-known sum-of-product representations of Boolean functions known
as Zhegalkine polynomials [14] in the mathematical logic or the Reed–Muller
canonical form [10] in the circuit synthesis. The advantage of this form that has
recently made it popular again is a more natural and compact representation of
some classes of Boolean functions (e.g., arithmetical functions, coders/cyphers,
etc.), a more natural mapping to some circuit technologies (FPGA–based and
nanostructure–based electronics), and good testability properties.

Factorization of Boolean polynomials is a particular case of decomposition
(so–called disjoint conjunctive or AND–decomposition) of Boolean functions.
Indeed, in a Boolean polynomial each variable has degree at most 1, which
makes the factors have disjoint variables: F (X,Y) = F1(X) ·F2(Y), X ∩Y = ∅.

It has been recently shown [4, 5] that factorizaton of Boolean polynomials pro-
vides a solution to conjunctive decomposition of functions given in the full DNF
(i.e., by a truth table) and for positive DNFs without the need of (inefficient)
transformation between the representations. Besides, it provides a method for
Cartesian decomposition of relational datatables [3, 6], i.e., finding tables such
that their unordered Cartesian product gives the source table. We give some
illustrating examples below.

Consider the following DNF

ϕ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v) ∨ (x ∧ u ∧ v)

It is equivalent to

ψ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v)

since the last term in ϕ is redundant. One can see that

ψ ≡ (x ∨ y) ∧ (u ∨ v)

and the decomposition components x ∨ y and u ∨ v can be recovered from the
factors of the polynomial

Fψ = xu+ xv + yu+ yv = (x+ y) · (u+ v)

constructed for ψ.

The following full DNF
ϕ = (x ∧ ¬y ∧ u ∧ ¬v) ∨(x ∧ ¬y ∧ ¬u ∧ v)∨

∨(¬x ∧ y ∧ u ∧ ¬v) ∨ (¬x ∧ y ∧ ¬u ∧ v)
is equivalent to

(x ∧ ¬y) ∨ (¬x ∧ y)
∧

(u ∧ ¬v) ∨ (¬u ∧ v)

and the decomposition components of ϕ can be recovered from the factors of the
polynomial

Fϕ = xȳuv̄ + xȳūv + x̄yuv̄ + x̄yūv = (xȳ + x̄y) · (uv̄ + ūv) (1)

constructed for ϕ.

Finally, Cartesian decomposition of the following table

238

Parallel Factorization of Boolean Polynomials 3

B E D A C

z q u x y

y q u x y

y r v x z

z r v x z

y p u x x

z p u x x

=

A B

x y

x z

×
C D E

x u p

y u q

z v r

can be obtained from the factors of the polynomial

zB · q · u · xA · yC+ yB · q · u · xA · yC+
yB · r · v · xA · zC+ zB · r · v · xA · zC +
yB · p · u · xA · xC+ zB · p · u · xA · xC =

= (xA · yB + xA · zB) · (q · u · yC + r · v · zC + p · u · xC)

constructed for the table’s content.

Decomposition facilitates finding a more compact representation of Boolean
functions and data tables, which is applied in the scope of the Logic Circuit
Synthesis, self-organizing databases, and dependency mining, respectively. Due
to the typically large inputs in these tasks, it is important to develop efficient
and practical factorization algorithms for Boolean polynomials.

In [13], Shpilka and Volkovich showed a connection between polynomial fac-
torization and identity testing. It follows from their results that a Boolean poly-
nomial can be factored in time O(l3), where l is the size of the polynomial given
as a symbol sequence. The approach employs multiplication of polynomials ob-
tained from the input one, which is a costly operation in case of large inputs. In
[4], Emelyanov and Ponomaryov proposed an alternative approach to factoriza-
tion and showed that it can be done without explicit multiplication of Boolean
polynomials. The approach has been further discussed in [7].

In this paper, we propose a parallel version of the decomposition algorithm
from [4, 7]. In Section 2, we revisit the sequential factorization algorithm from
these papers. In Section 3, we describe a parallel MIMD implementation of the
algorithm and further in Section 4 we perform a quantitative analysis of the
parallel algorithm versus the sequential one. Finally, in Section 5 we evaluate
our algorithm on a massively parallel many core architecture (Redefine) and
outline the results.

2 Background

In this section we reproduce the sequential algorithm from [4, 7] for the ease of
exposition. Let us first introduce basic definitions and notations.

A polynomial F ∈ F2[x1, . . . , xn] is called factorable if F = F1 · . . . · Fk,
where k ≥ 2 and F1, . . . , Fk are non-constant polynomials. The polynomials
F1, . . . , Fk are called factors of F . It is important to realize that since we consider
multilinear polynomials (every variable can occur only in the power of ≤ 1), the
factors are polynomials over disjoint sets of variables. In the following sections,

239

4 Vadiraj et al.

we assume that the polynomial F does not have trivial divisors, i.e., neither x,
nor x+ 1 divides F . Clearly, trivial divisors can easily be recognized.

For a polynomial F , a variable x from the set of variables V ar(F) of F ,
and a value a ∈ {0, 1}, we denote by Fx=a the polynomial obtained from F
by substituting x with a. ∂F

∂x denotes a formal derivative of F wrt x. Given a
variable z, we write z|F if z divides F , i.e., z is present in every monomial of F
(note that this is equivalent to the condition ∂F

∂z = Fz=1). Given a set of variables
Σ and a monomial m, the projection of m onto Σ is 1 if m does not contain any
variable from Σ, or is equal to the monomial obtained from m by removing all
the variables not contained in Σ, otherwise. The projection of a polynomial F
onto Σ, denoted by F |Σ , is the polynomial obtained as the sum of monomials
from the set S projected onto Σ, with duplicate monomials removed.

2.1 Factorization Algorithm

Algorithm 1 describes the sequential version of the factorization algorithm. As
already mentioned, the factors of a Boolean polynomial have disjoint sets of
variables. This property is employed in the algorithm, which tries to compute a
variable partition. Once it is computed, the corresponding factors can be easily
obtained as projections of the input polynomial onto the sets from the partition.

The algorithm chooses a variable randomly from the variable set of F. As-
suming the polynomial F contains at least two variables the algorithm partitions
the variable set of F into two sets with respect to the chosen variable:

– the first set Σsame contains the selected variable and corresponds to an
irreducible polynomial;

– the second set Σother corresponds to the second polynomial which can admit
further factorization.

The factors of F, Fsame and Fother are obtained as the projections of the input
polynomial onto Σsame and Σother, respectively.

In lines 1-3, we select an arbitrary variable x from the variable set of F and
compute the polynomials A and B. A is the derivative of F wrt x and B is the
polynomial obtained by setting x to zero in F. In lines 4-10, we loop through the
variable set of F excluding x, calculate the polynomials C and D, and check if
the product AD is equal to BC. C is the derivative of polynomial A and D is
the derivative of polynomial B. To check whether AD is equal to BC we invoke
the IsEqual procedure in line 6. We describe the IsEqual procedure in detail
in the next subsection.

2.2 IsEqual Procedure

Algorithm 2 describes the sequential version of the IsEqual procedure.

240

Parallel Factorization of Boolean Polynomials 5

Algorithm 1 Sequential Factorization Algorithm

Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F

1: Take an arbitrary variable x occurring in F
2: Let A = ∂F

∂x
, B = Fx=0

3: Let Σsame = x,Σother = ∅, Fsame = 0, Fother = 0
4: for each y ∈ var(F) \ {x} do
5: Let C = ∂A

∂y
, D = ∂B

∂y

6: if IsEqual(A,D,B,C) then
7: Σother = Σother ∪ {y}
8: else
9: Σsame = Σsame ∪ {y}
10: end if
11: end for
12: If Σother = ∅ then F is non-factorable
13: Return polynomials Fsame and Fother obtained as projections onto Σsame and

Σother respectively.

– The procedure takes input polynomials A,B,C,D and computes whether
AD = BC by employing recursion.

– Lines 1-2,7-16 implement the base cases when AD = BC can be determined
trivially.

– In Line 3-5, we check whether a variable z divides the polynomials A,B,C,D
such that the condition in Line 4 holds. If this is not the case, then we
can eliminate z from A,B,C,D and check if the products of the resulting
polynomials are equal.

– In Lines 17-25, we recursively invoke IsEqual procedure on polynomials,
whose sizes are smaller than the size of the original ones.

2.3 Scope for Parallelism

The crux of Algorithm 1 is the loop in Lines 4-11. We observe that the different
iterations of the loop are independent of each other. Hence the loop exhibits
thread level parallelism which can be exploited for performance gain. The con-
ditional block inside the loop in Lines 6-10 can be used to exploit the task level
parallelism between the multiple threads.
Multiple sections of Algorithm 2 are amenable for parallelization. Checking the
divisibility of the polynomials A,B,C,D in Lines 3-6 of IsEqual procedure can
be performed independently. In Lines 16-23, the recursive calls to IsEqual pro-
cedure are independent of each other and exhibit thread level parallelism.
In the next section we propose a parallel algorithm using the above observations.

241

6 Vadiraj et al.

Algorithm 2 Sequential IsEqual Procedure

Input Boolean polynomials A,B,C,D
Output TRUE if AD is equal to BC and FALSE otherwise.

1: If A=0 or D=0 then return (B=0 or C=0)
2: If B=0 or C=0 then return FALSE
3: for each z occurring in at least one of A,B,C,D do
4: if z|A or z|D xor z|B or z|C then
5: return FALSE
6: end if
7: Replace every X ∈ {A,B,C,D} with ∂X

∂z
, provided z|X

8: end for
9: if A=1 and D=1 then return (B=1 and C=1)
10: end if
11: if B=1 and C=1 then return FALSE
12: end if
13: if A=1 and B=1 then return (D=C)
14: end if
15: if D=1 and C=1 then return (A=B)
16: end if
17: Pick a variable z
18: if not(IsEqual(Az=0, Dz=0, Bz=0, Cz=0)) then return FALSE
19: end if
20: if not(IsEqual(∂A

∂z
, ∂D

∂z
, ∂B

∂z
, ∂C

∂z
)) then return FALSE

21: end if
22: if IsEqual(∂A

∂z
, Bz=0, Az=0,

∂B
∂z

) then return TRUE
23: end if
24: if IsEqual(∂A

∂z
, Cz=0, Az=0,

∂C
∂z

) then return TRUE
25: else return FALSE
26: end if

3 Proposed Approach

3.1 Parallel Factorization Algorithm

Algorithm 3 describes the parallel version of the factorization algorithm. In Lines
1-3, we select an arbitrary variable x from the variable set of F and compute
the polynomials A and B. In Lines 4-11, we perform multiple loop iterations
independently in parallel by spawning multiple threads. Each thread will return
two sets Σtid

same and Σtid
other specific to the scope of the thread designated by

thread identifier tid. In Lines 12-13, the variable sets Σsame and Σother are
computed as the union of the thread specific instances, respectively. Note that
Lines 12-13 perform barrier synchronization of all the parallel threads.

3.2 Parallel IsEqual Procedure

Algorithm 4 describes the parallel version of the IsEqual procedure. This algo-
rithm takes as input four polynomials A,D,B,C and checks whether the prod-
uct AD is equal to the product BC. Lines 1-2 and lines 14-21 describe the cases

242

Parallel Factorization of Boolean Polynomials 7

Algorithm 3 Parallel Decomposition Algorithm

Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F

1: Take an arbitrary variable x occurring in F
2: Let A = ∂F

∂z
, B = Fz=0

3: Let Σsame = x,Σother = ∅, Fsame = 0, Fother = 0
4: for each y ∈ var(F) \ {x} do in parallel
5: Let C = ∂A

∂y
D = ∂B

∂y

6: if IsEqual(A,D,B,C) then
7: Σtid

other = Σtid
other ∪ {y}

8: else
9: Σtid

same = Σtid
same ∪ {y}

10: end if
11: end for Wait for all the parallel threads to finish
12: Σother =

⋃
tid Σ

tid
other

13: Σsame =
⋃

tid Σ
tid
same

14: If Σother = ∅ then F is non-factorable; stop
15: Return polynomials Fsame and Fother obtained as projections onto Σsame and

Σother, respectively.

when determining AD = BC is trivial. In lines 3-9, we check whether a variable
z divides the input polynomials A,D,B,C such that the condition in Line 5
holds. If this is not the case, we divide them by z to obtain the reduced poly-
nomials. The above operations are performed for each variable independently
in parallel by spawning multiple threads. In Line 8 each thread checks whether
a variable ztid (tid denotes the thread id) is a divisor of any of A,B,C,D. If
ztid divides any of A,B,C,D it computes the corresponding reduced polyno-
mials Atid, Dtid, Btid, Ctid obtained by dividing any of A,D,B,C by ztid, re-
spectively. In line 10 we wait for all the threads to finish. In Line 13 we take
pairwise intersection of the corresponding monomials of thread specific polyno-
mials Atid, Dtid, Btid, Ctid to form polynomials which are free of trivial divisors.
Intersection of two monomials is a monomial containing the variables present
in both. In Lines 23-27, we perform four recursive calls to the IsEqual function
independently in parallel by spawning multiple threads. In Line 28-37, we wait
for all the threads to finish and compare the outputs of each threads to form
the final output. Note that lines 10 and 28 perform barrier synchronization of
all the parallel threads.

4 Experiments and Results

Experimental evaluation of the sequential and parallel algorithms was made on
Logic circuit synthesis benchmarks and synthetic Boolean polynomials.

243

8 Vadiraj et al.

Algorithm 4 Parallel IsEqual Function

Input Boolean polynomials A,B,C,D
Output TRUE if AD is equal to BC and FALSE otherwise.

1: If A =0 or D=0 then return (B=0 or C=0)
2: If B=0 or C=0 then return FALSE
3: for each z occurring in at least one of A,B,C,D do in parallel
4: set flagtid= True
5: if z|A or z|D xor z|B or z|C then
6: set flagtid= FALSE
7: end if
8: Replace every Xtid ∈ {A,B,C,D} with ∂Xtid

∂z
, provided z|Xtid

9: end for
10: Wait for all threads to finish
11: if

∧
tid

flagtid = FALSE then return FALSE

12: end if
13: X =

⋂
tid X

tid, for X ∈ {A,B,C,D}
14: if A=1 and D=1 then return (B=1 and C=1)
15: end if
16: if B=1 and C=1 then return FALSE
17: end if
18: if A=1 and B=1 then return (D=C)
19: end if
20: if D=1 and C=1 then return (A=B)
21: end if
22: Pick a variable z
23: Do the next 4 lines in parallel
24: x = not(IsEqual(Az=0, Dz=0, Bz=0, Cz=0))
25: y = not(IsEqual(∂A

∂z
, ∂D

∂z
, ∂B

∂z
, ∂C

∂z
))

26: z = IsEqual(∂A
∂z

, Bz=0, Az=0,
∂B
∂z

)
27: w = IsEqual(∂A

∂z
, Cz=0, Az=0,

∂C
∂z

)
28: Wait for all threads to finish
29: if not(x) then return FALSE
30: end if
31: if not(y) then return FALSE
32: end if
33: if z then return TRUE
34: end if
35: if w then return TRUE
36: else return FALSE
37: end if

244

Parallel Factorization of Boolean Polynomials 9

4.1 Logic Circuit Synthesis Benchmarks

We used ITC’99 [2], Iscas’85 [9], and n-bit ripple carry adder [12] benchmarks.
RTL designs of the digital logic circuits were converted from Verilog to the full
disjunctive normal form to obtain the corresponding Boolean polynomial. The
sequential and parallel algorithms were evaluated on the obtained Boolean poly-
nomials. Table 1 shows the execution time of sequential and parallel algorithms
executed on Xeon processor running at 2.8 GHz with 4 threads averaged over
5 runs. One can observe a considerable performance speedup of the parallel
algorithm over the sequential one.

Table 1. Results on Xeon processor at 2.8 GHz using 4 threads

Benchmark Sequential Multi-Threaded Speedup

ITC’99 4324(s) 1441(s) 3.01
Iscas’85 7181(s) 2633(s) 2.73
EPFL Adder 1381(s) 374(s) 3.69

4.2 Synthetic Polynomials

Synthetic polynomials of varying complexities were generated at random and
sequential and parallel algorithms were evaluated on them. Table 2 shows exe-
cution times for the sequential and parallel algorithms executed on Xeon pro-
cessor running at 2.8 GHz with 4 threads averaged over 5 runs. We observe that
the execution time of both sequential and multithreaded algorithm increases
drastically with the increase in the complexity of Boolean polynomials. We also
observe that the speedup due to parallelization decreases with the increase in
the complexity of Boolean polynomials.

Table 2. Execution time of factoring synthetic polynomials on Xeon processor at 2.8
GHz using 4 threads

Number of Monomials Sequential Multi-Threaded Speedup

10 0.023(s) 0.0074(s) 3.12
50 16.29(s) 5.07(s) 3.21
100 103.5(s) 30.44(s) 3.4
500 483.6(s) 178.1(s) 2.7
1000 1165(s) 520.9(s) 2.2
5000 1430(s) 735.11(s) 1.91
10000 12614(s) 8034(s) 1.57

245

10 Vadiraj et al.

(a) (b)

Fig. 1. (a) Parallel speedup vs number of threads with fixed problem size
(b) Parallel speedup vs number of threads with fixed problem size per thread

4.3 Scaling Results

Figure 1a shows the speedup of the parallel decomposition algorithm over the
sequential one wrt the number of threads. Here, the problem size is fixed to
examine the strong scaling behaviour of the parallel decomposition algorithm.
We observe that the parallel speedup is decreased as the size (complexity) of
the problem increases. As the problem size increases, so does the call to the
sequential bottleneck of the algorithm (simplification of Boolean polynomials),
which causes the speedup to reduce.
Figure 1b shows the speedup of the parallel decomposition algorithm over the se-
quential algorithm wrt the number of threads. Here, the problem size per thread
is fixed to examine the weak scaling behaviour of the parallel algorithm. The in-
crease in the parallel speedup with the increase in the number of threads is less
than the ideal linear speedup. This is due to the sequential bottlenecks in the
decomposition algorithm (simplification of Boolean polynomials) and the com-
munication bottleneck among multiple threads. Note that in these tests number
of variables ranges from tens to two hundreds.

5 Implementation on Redefine

The REDEFINE architecture [1] comprises Compute Resources (CRs) connected
through a Network-on-Chip (NoC) (see Figure 2a). REDEFINE is an application
accelerator, which can be customized for a specific application domain through
reconfiguration. Reconfiguration in REDEFINE can be performed primarily at
two levels, viz. the level of aggregation of CRs to serve as processing cores for
coarse grain multi-input, multi-output macro operations, and at the level of
Custom Function Units (CFU) presented at the Hardware Abstraction Layer
(HAL) as Instruction Extensions. Unlike traditional architectures, Instructions

246

Parallel Factorization of Boolean Polynomials 11

Off-Chip Memory Controller

Host Interface

RRM Compute Node Router

(a)

L1$: Private L1-cache for global memory address space

CM$: Cache for context memory address space

DSM-bank: Distributed Shared Memory bank, hosts a

L1$L1$L1$L1$

D
S
M

-
b
a
n
k

Router

O
rch

estra
to
r

CM$

CE CE CE CE

region of global memory and context memory

(b)

Fig. 2. (a) A 16 node REDEFINE comprising of a 4x4 toriodal mesh of routers and a
redefine resource manager(RRM) for interfacing with the host
(b) Composition of a compute Node

Extensions in REDEFINE can be defined post-silicon. Post-silicon definition
of Instruction Extensions in REDEFINE is a unique feature of REDEFINE
that sets it aside from other commercial multicores by allowing customization of
REDEFINE for different application domains.

REDEFINE execution model is inspired by the macro-dataflow model. In this
model, an application is described as a hierarchical dataflow graph, as shown in
Figure 3, in which the vertices are called hyperOps, and the edges represent
explicit data transfer or execution order requirements among hyperOps. A hy-
perOp is a multiple-input and multiple-output (MIMO) macro operation. A
hyperOp is ready for execution as soon as all its operands are available and all
its execution order or synchronization dependencies are satisfied. Apart from
the arithmetic, control, and memory load and store instructions, the REDE-
FINE execution model includes primitives for explicit data transfers and syn-
chronization among hyperOps and primitives for adding new nodes (hyperOps)

247

12 Vadiraj et al.

and edges to the application graph during execution. Thus, the execution model
supports dynamic (data-dependent) parallelism. The execution model follows
non-preemptive scheduling of hyperOps; therefore cyclic dependencies are for-
bidden among hyperOps. The runtime unit named Orchestrator schedules ready
hyperOps onto CRs. A CR comprises four Compute Elements (CEs). Each CE
executes a hyperOp (see Figure 2b). All communications among hyperOps are
unidirectional i.e., only producer hyperOp initiates and completes a communi-
cation. Thus with sufficient parallelism, all communications can overlap with
computations. Compared to other hybrid dataflow/control-flow execution mod-
els, REDEFINE execution model simplifies the resource management and the
memory model required to support arbitrary parallelism.

Fig. 3. Macro-dataflow execution model. An application described as a hierarchical
dataflow graph, in which vertices represent hyperOps and edges represent explicit data
transfer or execution order requirements between the connected hyperOps.

5.1 Decomposition Algorithm Using HyperOps

Algorithm 5 describes in pseudo-code the decomposition algorithm when written
using ”C with HyperOps”. The code snippet, corresponding to Algorithm 5 is
presented in the listing below. In the code snippet the terms CMAddr, Sync,

kernel, WriteCM, CMADDR are REDEFINE specific annotations. The Lines
2-8 and 12-13 of Algorithm 5 are the same as Lines 5-10 and 1-3 of Algorithm
1, respectively. In Lines 15-17 of Algorithm 5, for each variable y in the variable
set of F (excluding x) we spawn HyperOps in parallel to calculate whether y
belongs to Σsame or Σother. In Lines 1-10, we define the HyperOp. It takes as
input Boolean polynomials A,B and a variable y and adds y to Σsame or Σother.
In Lines 18-20, we wait for the all the HyperOps to finish and output Fsame and
Fother.

The proposed decomposition algorithm using HyperOps was evaluated us-
ing REDEFINE emulator executed on Intel Xeon processor. Table 3 shows the
execution time of the decomposition algorithm executed on Redefine emulator

248

Parallel Factorization of Boolean Polynomials 13

Algorithm 5 Decomposition Algorithm using HyperOps

Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F
Global variables Σsame, Σother

1: Begin HyperOp
2: Inputs: A,B, variable y
3: Calculate C = ∂A

∂y
, D = ∂B

∂y

4: if IsEqual(A,D,B,C) then
5: Σother = Σother ∪ {y}
6: else
7: Σsame = Σsame ∪ {y}
8: end if
9: Call Sync HyperOp
10: End HyperOp
11: Take an arbitrary variable x occurring in F
12: Let A = ∂F

∂z
, B = Fz=0

13: Let Σsame = x,Σother = ∅, Fsame = 0, Fother = 0
14: for each y ∈ var(F) \ {x} do in parallel
15: Spawn HyperOp with inputs A,B, y
16: end for
17: Wait for the Sync HyperOp to return
18: If Σother = ∅ then F is non-factorable; stop
19: Return polynomials Fsame and Fother obtained as projections onto Σsame and

Σother, respectively.

Table 3. Parallel factoring of synthetic boolean polynomials using REDEFINE emu-
lation running on Intel Xeon processor at 2.8 GHz

Number of
Monomials

Sequential
(cpu cycles)

Multi-Threaded
(cpu cycles)

Redefine
(cpu cycles)

30 17192× 103 7896× 103 6837× 103

50 45612× 103 14196× 103 12320× 103

on synthetic Boolean polynomials. The Redefine implementation has the lowest
CPU cycles.

6 Conclusions and Future Work

In this paper, we have reviewed the factorization problem for Boolean polyno-
mials. Factorization provides the basis for decomposition of Boolean functions
in different representations and decomposition of data tables. Hence, it is im-
portant to develop efficient factorization procedures. We have considered the
approach presented in [4] for factoring Boolean polynomials and presented a
MIMD implementation thereof, which exploits task and data level parallelism
to achieve better performance. Evaluation of the sequential and parallel algo-
rithms on logic circuit synthesis benchmarks and synthetic Boolean polynomials

249

14 Vadiraj et al.

showed a considerable speedup obtained by parallelization. The implementation
of the parallel algorithm on a REDEFINE emulator outlined the performance
benefits under execution on a massively parallel many core architecture. REDE-
FINE execution model is based on data flow principles and hence, the need for
explicit barrier synchronization is obviated. This results in better performance of
MIMD applications (Ex:Boolean factorization) on the REDEFINE architecture.
In the future work we are going to benchmark the proposed parallel algorithm
on REDEFINE hardware and analyze the results. We also plan to use REDE-
FINE for an efficient hardware implementation of Boolean functions given as
Boolean polynomials and DNFs in order to efficiently implement decomposition
algorithms for these representations. Finally, we are going to use these implemen-
tations for non-disjoint decomposition of DNFs [11] and data tables [3], which is
based on massive computation of disjoint decompositions as a subtask. Listing
1.1 describes the decomposition program written using C with HyperOps.

1 hyperOp void decompose (CMAddr s e l f I d , Op32 a , Op32 b , Op32 p s , Op32 p o ,
Op32 m, Op32 n , Op32 i , Op32 consumerFrId){

2
3 in t ∗A = a . ptr ;
4 i n t ∗B = b . ptr ;
5 i n t ∗par t i t i on same = p s . ptr ;
6 i n t ∗ pa r t i t i o n o t h e r = p o . ptr ;
7 i n t I = i . i 32 ;
8 i n t n = n . i32 ;
9 i n t m = m. i32 ;

10 in t I=0,J = 0 ;
11 in t ∗C, ∗D;
12
13 CMAddr con f r Id = consumerFrId . cmAddr ;
14 f o r (I = 0 ; I<n ; I++){
15 ∗(pa r t i t i on same+J) = 0 ;
16 ∗(p a r t i t i o n o t h e r+J) = 0 ;
17 }
18
19 f o r (I = 0 ; I<m; I++){
20 f o r (J=0;J<n ; j++){
21 ∗(C+I∗columns+J) = 0 ;
22 ∗(D+I∗columns+J) = 0 ;
23 }
24 }
25 d e r i v a t i v e (A,B,C, i) ;
26 d e r v i a t i v e (A,B,D, i) ;
27 i f (IsEqual (A,D,B,C)){
28 ∗(p a r t i t i o n o t h e r+i) =1;
29 }
30 e l s e {
31 ∗(pa r t i t i on same+i) =1;
32 }
33 Sync (confr Id , −1) ;
34 }
35
36
37 k e r n e l i n t decompose start (i n t ∗A, in t ∗B, in t ∗part i t ion same , i n t ∗

pa r t i t i on o th e r , i n t N){
38
39 in t i = 0 , j = 0 ;
40 s t a t i c i n t counter = 0 ;
41 CMAddr decomposeFr ;
42 CMAddr syncFr = Crea t e I n s t (&smd Sync) ;
43 WriteCM(CMADDR(syncFr , 15) , N−1) ;
44
45 f o r (i = 1 ; i<N; i++){
46 decomposeFr = Crea t e I n s t (&smd decompose) ;
47 WriteCM(CMADDR(decomposeFr , 0) , (void ∗) (A)) ;
48 WriteCM(CMADDR(decomposeFr , 1) , (void ∗) (B)) ;
49 WriteCM(CMADDR(decomposeFr , 2) , (void ∗) (pa r t i t i on same)) ;
50 WriteCM(CMADDR(decomposeFr , 3) , (void ∗) (p a r t i t i o n o t h e r)) ;
51 WriteCM(CMADDR(decomposeFr , 4) , M) ;
52 WriteCM(CMADDR(decomposeFr , 5) , N) ;
53 WriteCM(CMADDR(decomposeFr , 6) , i) ;
54 WriteCM(CMADDR(decomposeFr , 7) , CMADDR(syncFr , 1 5)) ;
55 }
56 return 0 ;
57 }

Listing 1.1. Snippet of Decomposition algorithm using Hyperops

250

Parallel Factorization of Boolean Polynomials 15

References

1. Redefine - reconfigurable silicon core description. http://morphing.in/redefine, ac-
cessed: 2018-12-07

2. Corno, F., Reorda, M., Squillero, G.: Rt-level itc’99 benchmarks and first
atpg results. Design Test of Computers, IEEE 17(3), 44–53 (Jul 2000).
https://doi.org/10.1109/54.867894

3. Emelyanov, P.: On two kinds of dataset decomposition. In: Proceedings of the 18th

International Conference on Computational Science (ICCS 2018), Part II. Lecture
Notes in Computer Science, vol. 10861, pp. 171–183. Springer (2018)

4. Emelyanov, P., Ponomaryov, D.: Algorithmic issues of AND-decomposition of
boolean formulas. Programming and Computer Software (2015)

5. Emelyanov, P., Ponomaryov, D.: On tractability of disjoint AND–decomposition
of boolean formulas. In: Proceedings of the PSI 2014: 9th Ershov Informatics Con-
ference. Lecture Notes in Computer Science, vol. 8974, pp. 92–101. Springer (2015)

6. Emelyanov, P., Ponomaryov, D.: Cartesian decomposition in data analysis. In:
Siberian Symposium on Data Science and Engineering (SSDSE) (2017)

7. Emelyanov, P., Ponomaryov, D.: On a polytime factorization algorithm for
multilinear polynomials over f2. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing - 20th In-
ternational Workshop, CASC 2018, Lille, France, September 17-21, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11077, pp. 164–176. Springer
(2018). https://doi.org/10.1007/978-3-319-99639-4, https://doi.org/10.1007/978-
3-319-99639-4 11

8. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, Third edn. (2013)

9. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the iscas-85 benchmarks: A
case study in reverse engineering. IEEE Des. Test 16(3), 72–80 (Jul 1999).
https://doi.org/10.1109/54.785838, https://doi.org/10.1109/54.785838

10. Muller, D.E.: Application of Boolean algebra to switching circuit design and to
error detection. IRE Transactions on Electronic Computers EC-3, 6–12 (1954)

11. Ponomaryov, D.: A polynomial time delta-decomposition algorithm for positive
dnfs. In: Proceedings of the 14th International Computer Science Symposium in
Russia (CSR). Lecture Notes in Computer Science, vol. 11532. Springer (2019)

12. Schmidt, J., Fǐser, P.: A prudent approach to benchmark collection
13. Shpilka, A., Volkovich, I.: On the relation between polynomial identity testing and

finding variable disjoint factors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) Automata, Languages and Programming
(2010)

14. Zhegalkin, I.: Arithmetization of symbolic logics. Sbornik Mathematics 35(1), 311–
377 (1928), in Russian.

251

The measure of regular relations recognition applied to
the supervised classification task

Yuri Mikheev1[0000-0002-7641-6243]

1 Ph.D., Saint – Petersburg State University

Abstract.
The probability measure of regularities recognition in an information

stream is introduced in the paper. The measure allows creating machine-
learning models without a supervisor. The experiment described in the paper
proves that the measure allows recognizing regularities and finding out reg-
ular relations between values of variables.

Machine learning models find out regular relations in datasets that allow
reconstructing unknown values of the classification variable. The classifica-
tion algorithm, based on the probability measure of regularities recognition,
is described in the paper. The measure of connection with entropy is demon-
strated, and mutual information is used to optimize algorithm performance.
The accuracy of the algorithm fits the accuracy of well-known supervised
machine learning algorithms and even exceeds it.

Keywords: Cognition, Machine-Learning, Classification, Supervised Clas-
sification Algorithm, Prediction, Regularity, ZClassifier, Association rules.

1 Human and Machine Cognition

Before computers and computer science were developed, we could research cognition
activity only by studying human beings. From the middle of the 20th-century, scientists
have been able to make computer models of cognition and then test them [1].

Now, because of the growth in the power of computers and the availability of da-
tasets, it has become easier to make and test various cognition activity models. And it
appears that many machine-learning algorithms are being widely used
[1,2,4,7,8,14,15,18,19].

Cognition is an essential factor influencing survival. Prediction is a result of cogni-
tion activity, and prediction accuracy is the measure of the quality of cognition. So, if
the model cognition activity makes a good prediction, it could be considered as realistic
and functionally relevant to the original cognition subject.

In this paper, cognition is considered as a process of regularities recognition in the
input information stream. Cognition system finds it, memorizes it and then uses it for
prediction.

252

2

Entropy as a measure of certainty is widely used in supervised machine learning
[10,15]. Here, we use entropy for unsupervised machine learning to select regularities
needed for prediction.

2 Probability measure of regular relations recognition

Let us use the following operational definition - regularity is an often-observed, re-
peated relation between symbols in an information stream.

We consider relations in the same way as it is/they are considered in the set theory;
for example, relations of order, similarity, identity, etc. In the paper, only similarity
relation is used, but the same approach could be easily applied to any other relation.
The considered measure could be applied to any relation or set of relations between
symbols in the information stream.

There are simple regularities between two symbols and more complex relations. The
more the number of symbols in a relation, the more complex the relation is.

We should consider that regularity exists if the probability of observation relation
between symbols is more than random. We title the measure of difference from the
random probability as “The measure of regularities recognition”.

Symbols in the information stream have the empirical probability of appearing ,.
 is a subset of all possible input symbols or input dictionary. – the subset

of the symbols included in regularity. Defining as the probability of the regularity
between symbols in ,

The measure of regularities recognition is

And in the logarithm form

Where , – frequency of the relation appearance, amount of
observations in a data stream, - probability of appearance as if they are in-
dependent. From the theorem of probabilities multiplication, it follows that the proba-
bility of the independent events is a multiplication of probabilities of each of them:

Then

253

3

 (1)

The measure shows how large is the difference between the regular and the random
appearances of the symbol .

The measure is closely related to function lift in association rule algorithms. In as-
sociation rule works, lift is used as one of the a priori criteria for selecting rules[12-14],
and we are using it as a measure of sufficiency of information for prediction.

Fig. 1. Z depending on and

Expression (1) in the form of conditional probabilities:

 (1.1)

Where is a subset excluding that is .

, – is a subset excluding that is , and so on.

So, Z is dependent on joint conditional probabilities . Therefore, Z could help

select a set of symbols that have the strongest influence on each other. (1.1) is a very
important property for algorithm optimization and selecting the most important sym-
bols for prediction.

254

4

If Z < 0 then:

Regularity is not found because of probability regularity appearance being less than
the random appearance of symbols in relation .

If Z ≥ 0 then:

 (2)

Regularity is recognized in the input data stream.
Thus:

 – Random relation of symbols
 – Regular relation

2.1 Related works

Association rules mining is most related to the paper [22]. Many works were pub-
lished in the field of association rules analysis for the classification problem, for exam-
ple [9,18,21,22]. The major problem of those works is reducing the number of rules in
model and selecting the most useful rules for classification. We deal with a similar
problem in this paper. Unlike the mentioned works, entropy and the amount of mutual
information for rule selection are used in this paper.

In association rules approach, terms unusual for probabilistic theory are widely used.
The most popular of them are support(X) which is the same as the probability of the X
in dataset and confidence(X => Y) which is a conditional probability. In this paper,
classical probability theory terms are used in order to link information theory and in-
formational entropy.

Entropy approach in the form of information gain is widely used in decision tree
algorithms and regression [5, 8 ,10, 15]. All decision tree algorithms are supervised
machine learning kinds of algorithms. The way for using entropy approach to unsuper-
vised learning is presented here. In the paper, the amount of mutual information is used
for calculating values of the classification variable.

Mutual information is a basis of Bayesian networks. Supervised classification algo-
rithms use conditional information in oriented acyclic graphs. Instead of that, we are
directly using for unsupervised learning mutual information from relations of variables
values.

2.2 Classification task

In a classification task, we have a dataset containing records with observations of
variables . We can calculate that are all observed combinations of the val-
ues of the variables in the data set.

255

5

Let us be sure that, the mathematical expectation of Z of is the mutual infor-
mation between variables in the dataset.

Mutual information between two systems [6, 16]:

In this case, systems are subsets of the variables in the dataset. If we put in this

expression the variables from , we get:

 (3)

From attributes of the mutual information [6, 16], we get

,

Where is a set of relations on the set of values of variables , – entropy

variable , – entropy relations between values of
Let’s express it by conditional entropy. We know

thus
 = ,

 =

 = (3.1)

So, if we calculate E[Z] of variables or any set of symbols included in , we will

have an amount of information concentrated either in the set of the variables or the set
of symbols. Amount of mutual information shows how strong are interdependent values
of the variables and in what degree they could be used for reinstating one of them, for
example, classification variable.

The following hypothesis should be tested:
1. Expression (1) could be used for recovering relations between the values of the

variables in data sets and reinstating unknown values in the investigated varia-
ble.

2. By using expression (2), we can create algorithms that recognize and use regu-
larities for prediction.

256

6

If we succeed in it, we empirically prove the truth of (1) and the usefulness of (2).
Let’s be sure of it and make the algorithm on the basis of (1) and (2) and title the

algorithm “ZClassifier”.

3 Experimental testing of The measure of regularities
recognition

In order to test the measure of regularities recognition, we’ll solve the problem of su-
pervised classification and use published datasets. If ZClassifier does accurate classifi-
cations, then we prove the correctness of the measure of regularities recognition.

Using (1), we calculate how strongly interconnected are the values of variables in
the input dataset.

Let data in the dataset be structured as a record . Every record contains values
of the variables , , n – a number of variables in the dataset.

Let S be the set of values of the variables , – set of values of the variables
. S is a dictionary of input dataset and is a symbol from the dictionary. Every

record in the input dataset contains a set of relations between symbols of the records
which is the powerset . , is the set of all relations acquired
in the dataset.

For each combination, we can calculate probability , and expression (1) be-
comes:

 (4)

 is a probability appearance of in the dataset.

Z (4) shows how strong the variable values’ interdependencies are.

The direct algorithm of making model is:
Input: Training dataset

For each record from the training dataset, do

For each relation c in the record
 Increment appearance frequency f()
 Save and f() in the model

The direct algorithm collects all relations existing in the dataset. However, not all of

them are necessary to make an accurate prediction.
For an accurate prediction, a model needs only relations correlated with the classifi-

cation variable. For the selection, correlated relations’ partial joint information of rela-
tion could be used . When model collects enough information to predict
X, that is, to explain entropy of X, the algorithm should stop. The following algorithm
is based on this idea.

257

7

The back index algorithm of making model is:
Input: Training dataset D, - mutual information threshold

Create back index of the training dataset
For all variables calculate
For all relation of the values of variables calculate mutual information

 and save in sorted list (relation with highest mutual infor-
mation is on the top of the list)

For all do
Make and calculate by back index
If () save in and increment

Repeat till

Value of classification variable recovering algorithm is:
Input: Testing Dataset, values (symbols) of are the investigated variables

For each record from test dataset

Select all relations among and save it in
For all and each create relation ,

and calculate Z(),
If Z() > 0 then saves in

, where one of following functions:
a.)
b.

c. ,

 and are experimentally fit constants, conditional

probability of

We are choosing a prediction function through experiments in order to maximize the
prediction accuracy of the

If we deal with numeric values of (not categorical values), we should define in-
tervals in order to decrease the amount of . In that case, accuracy is dependent on
the interval borders.

3.1 Direct Classifier algorithm characteristics and optimization

3.1.1 Working time

The algorithm is sensitive to the number of variables in the dataset and true complex-
ity of the data. Algorithm complexity is , – the number of variables,
- the number of records. Time and memory usage exponentially grow with the growth
of the number of variables.

258

8

Restricting the maximum number of symbols in relations sufficiently decreases the
working time. In most cases, 5-7 symbols max in relation are enough for excellent ac-
curacy. Complexity in those cases is significantly less .

Another way to optimize time performance is by reducing the number of variables
in the dataset. In practice, to make a prediction, we only need variables that correlate
with the classification variable. We can estimate how strongly values of variables in-
fluence each other by using (1.1). Variable value influence is input in the amount of
mutual information of relations containing the variable value.

Variable value influence estimation algorithm:
Input: is the set of all relations acquired in the dataset

for all
 for all s from
)

The influence shows how important it is for predicting the variable value and deciding
if it is it worth using the variable in the model or not. Variables could be selected by
influence.

3.1.2 Model size

The result of the training stage is a huge amount of relations. To reduce model size, we
can use (3.1) and select only informative relations at the pruning stage.

Pruning algorithm:
Input: is the set of all relations acquired in the dataset
 – minimal information of

for all (is the set of all relations acquired in the dataset),
 if , then remove form

Pruning allows reducing model size in several times without any losses in accuracy.

Fig. 2. Reducing model size and error growth after pruning (Adult dataset)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0
2000
4000
6000
8000

10000
12000
14000
16000

0,0001 0,0005 0,001 0,01 0,1

er
ro

r

m
od

el
 si

ze

min information

Model size after pruning Error

259

9

3.2 Back index ZClassifier algorithm complexity

Formally, algorithm complexity is , – number of variables, - num-
ber of records, – number of relations in the sorted list. That is, the direct algorithm has
lower complexity than the back index algorithm.

In practice, the back index ZClassifier algorithm works faster with datasets having
a larger number of variables because the back

 index algorithm deals with “good” relations that have a high amount of mutual
information. A model improbable is needed to have relations for accurate prediction.

For example, Home Credit Default Risk competition dataset from Kaggle has 123
variable in the main data table. Direct ZClassifier can create a model that contains re-
lations 3 symbols long max. Back index ZClassifier creates a model without restrictions
on relation length in less than half an hour. Size comparison of the algorithms models
is provided in Table 2 and the accuracy in Table 3.

.

4 The results of the experiments

ZClassifier was applied to several UCI datasets. Accuracy was estimated by kFold with
most appropriate k to the dataset. Datasets are described in table 1.

Table 1. UCI dataset in the experiment

Dataset Variables Used variables Records kFold’s k

Mushrooms 17 17 8 125 10
Adult 14 4 48 842 10
Census 40 4 299 291 10
Letters 17 15 20 000 10
Zoo 17 9 160 5 times k=2
Iris 4 4 149 5 times k=2
Segments 19 12 2310 10

k meanings in kFold were chosen in order to provide enough size of training data,
so for small data sets, Zoo and Iris k was equal to 2, and we performed the experiment
5 times.

Table 2. Direct and Back Index algorithms complexity comparison

Dataset Direct ZClassifier Back Index ZClassifier
Relations in
model

Relations after
pruning

Relations in
model

Relations after
pruning

Mushrooms 53 168 5 108 3 737 2 634
Adult 12 920 1 622 2 314 699
Census 49 199 5 804 19 692 5 507
Letters 51 304 560 46 890 748 34 355 22 823
Zoo 2 028 923 - 743 -
Iris 608 608 253 219
Segments 461 255 - 1381 -

260

10

Comparing the ZClassifier results with those of other supervised classification algo-
rithms [10] (table 2):

Table 3. The comparison of the result accuracy

Dataset NB-
Tree

Naïve
Bayes

С4.5 Gradient
boosting

CMAR
[21]

Direct
ZClassifier

Back index
ZClassifier

Mushrooms 100 95,52 100 100 100 ±0 93,28 ±1,73
Adult 85,9 83,88 85,54 87,53 86,18 ±0,91 86,1 ±0,75
Census 76,8 95,2 95,4 94,87 ±0,16 94,87±0,17
Letter 85,66 64,07 88,03 93,4 91,42 ±0,40 56,09±1,35
Zoo 93,07 94,97 92,61 97,1 97,42 ±0,45 95,0±3,0
Iris 95,4 95,53 94,73 95.83 94 91,92 ±0,75 92,8±2,84
Segments 95,34 80,17 96,79 99,9 96,22 ±0,31 76,2±5,0

From the results, we can conclude that classification on the basis of (1) have a com-

parable or better accuracy [13].
Gradient boosting [17] shows better results, but the boosting process takes a lot of

time for iterations. ZClassifier finds out good decision in one iteration and could be
boosted also in a similar way as other classification algorithms. This task is planned to
be undertaken in the future.

5 Conclusions

The measure of regularities recognition is introduced in the paper. ZClassifier is an
algorithm created in order to demonstrate that the measure of regularities recognition
is working, and the measure shows good results in the classification task.

The hypothesis that expression (1) could be used for recovering relations between
values of the variables in data sets and reinstating unknown values investigated variable
and the hypothesis that using (2), we can create algorithms that recognize and use reg-
ularities for prediction, are proven.

The experiment shows that condition (2) decreases the algorithm work time. And
pruning based on most informative relations selection allows a sufficiently reduced
model size.

The measure of regularities recognition could be applied for regularities recognition
in data streams having various structures of data. For example, the author created the
algorithm for recognition regularities in English and Russian texts. The algorithm can
distinguish words and regular phrases from the texts.

An example of entropy approach to unsupervised machine learning was demon-
strated in the paper. The measure of regularities recognition could also be used in other
algorithms. In the future, on the basis of the measure of regularities recognition, we will
create unsupervised machine-learning algorithms for various types of datasets.

261

11

References

1. Ben-Hur Asa [et al.] Support vector clustering [Journal]. - [s.l.] : Journal of
Machine Learning Research, 2, 2001. - 2. - pp. 125-137.

2. Bertsekas Dimitri P. Dimitri P. Bertsekas. "Dynamic Programming and
Optimal Control: Approximate Dynamic Programming, Vol.II [Book]. -
[s.l.] : Athena Scientific, 2012.

3. Blakeslee Jeff Hawkins & Sandra On intelligence [Book]. - [s.l.] : Times
Books, 2004.

4. Brown J. D. Principal components analysis and exploratory factor analysis –
Definitions, differences and choices [Journal] // Shiken: JALT Testing &
Evaluation SIG Newsletter. - 13 January 2009. - 1. - pp. 26-30.

5. Cai Xiongcai 18th European Conference on Machine Learning
[Conference] // Level Learning Set: A Novel Classifier Based on Active
Contour Models. - Warsaw, Poland : [s.n.], 2007.

6. E.S. Ventcel Teoria veroytnostey. Вентцель, Е. С. (1999). Теория
вероятностей: учебник для вузов. [Book]. - Moscow : [s.n.], 1999.

7. Estivill-Castro Vladimir Why so many clustering algorithms – A Position
Paper [Journal] // ACM SIGKDD Explorations Newsletter. - 2002. - 4(1). -
pp. 65-75.

8. Freedman David A. Statistical Models: Theory and Practice [Book]. - [s.l.] :
Cambridge University Press , 2005.

9. Hahsler Michael and Hornik, Kurt and Reutterer, Thomas Implications of
probabilistic data modeling for rule mining [Journal] // Research Report
Series / Department of Statistics and Mathematics, 14. - 2005.

10. Jiang Liangxiao and Li Chaoqun Scaling Up the Accuracy of Decision-Tree:
A Naive-Bayes Combination [Journal]. - [s.l.] : JOURNAL OF
COMPUTERS. - VOL. 6, NO. 7, JULY 2011.

11. Kliegr Tom ́aˇs Quantitative CBA: Small and Comprehensible Association
Rule Classification Models [Journal] // School of Electronic Engineering and
Computer Science,Queen Mary University of London, United Kingdom, and
Faculty of Informatics and Statistics, VSE, Czec. - 2017.

12. MacKay David J.C. Information Theory, Inference, and Learning
Algorithms (First ed.). [Journal] // Cambridge University Press.. - 2003. - p.
34.

13. Rich Caruana Alexandru Niculescu-Mizil An Empirical Comparison of
Supervised Learning Algorithms. [Journal]. - Ithaca, NY 14853 USA :
Department of Computer Science, Cornell University, 2006.

262

12

14. Rish Irina. An Empirical Study of the Naïve Bayes Classifier. [Journal] //
IJCAI Work Empir Methods Artif Intell. - 2001. - 3.

15. Rokach Lior and Maimon Oded Data Mining with Decision Trees. Theory
and Applications [Book]. - Israel : Ben-Gurion University of the Negev, Tel-
Aviv University, 2007.

16. Shannon C. and Weaver, W. The Mathematical Theory of Communication
[Journal] // Bell System Technical Journal. - 1948. - 27. - pp. 379-423, 623-
656.

17. Sigrist Fabio Gradient and Newton Boosting for Classification [Journal] //
Lucerne University of Applied Sciences and Arts. - 2019.

18. Srikant Rakesh Agrawal and Ramakrishnan 20th International Conference
on Very Large Data Bases, pages 487-499 [Conference] // Fast algorithms
for mining association rules. . - Santiago, Chile : [s.n.], 1994. - pp. 487-499.

19. Stuart J. Russell Peter Norvig Artificial Intelligence: A Modern Approach
[Book]. - [s.l.] : Prentice Hall, 2009.

20. Vapnik Vladimir The Nature of Statistical Learning Theory. [Book]. - [s.l.] :
Springer Science & Business Media, 1999.

21. Wenmin Li Jiawei Han, Jian Pei CMAR: Accurate and Efficient
Classification Based on Multiple Class-Association Rules [Journal] // School
of Computing Science, Simon Fraser Universit.

22. Xiaoxin Yin Jiawei Han CPAR: Classification based on Predictive
Association Rules [Journal] // University of Illinois at Urbana-Champaign.

263

Hermes: A Reversible Language
for Writing Encryption Algorithms

(Work in Progress)

Torben Ægidius Mogensen

DIKU, University of Copenhagen
Universitetsparken 5, DK-2100 Copenhagen O, Denmark

torbenm@di.ku.dk

Abstract. We describe the programming language Hermes, which is de-
signed for writing private-key encryption algorithms. Specifically, every
program written in Hermes is reversible: It can run equally well forwards
and backwards. This means that you only write the encryption algo-
rithm and get the decryption algorithm for free. Hermes also ensures
that all variables are cleared after use, so the memory will not contain
data that can be used for side-channel attacks. Additionally, to prevent
side-channel attacks that extract information from running times, control
structures that may give data-dependent run times are avoided.

1 Introduction

Recent work [6] have investigated using the reversible language Janus [2,11] for
writing encryption algorithms. Janus is a structured imperative language where
all statements are reversible. A requirement for reversibility is that no informa-
tion is ever discarded: No variable is destructively overwritten in such a way that
the original value is lost. Instead, it must be updated in a reversible manner or
swapped with another variable. Since encryption is by nature reversible, it seems
natural to write these in a reversible programming language. Additionally, re-
versible languages requires that all intermediate variables are cleared to 0 before
they are discarded, which ensures that no information that could potentially be
used for side-channel attacks is left in memory. But non-cleared variables is not
the only side-channel attack used against encryption: If the time used to encrypt
data can depend on the values of the data and the encryption key, attackers can
gain (some) information about the data or the key simply by measuring the time
used for encryption. Janus has control structures the timing of which depend on
the values of variables, so it does not protect against timing-based attacks.

So we propose a language, Hermes, specifically designed for encryption. What
Hermes has in common with Janus is reversible update statements, swap state-
ments, and procedures that can be called both forwards and backwards. The
main differences to Janus are that Hermes operates on integers of specified sizes,
specifically 32 and 64-bit signed and unsigned integers, and there are no time-
sensitive control structures. The syntax of Hermes resembles C, so programs will
be readily readable by C programmers.

264

Figure 1 shows a Hermes implementation of TEA, a Tiny Encryption Al-
gorithm [7] corresponding to the C code in Figure 2, which is taken from the
Wikipedia page for TEA [10]. While the Hermes code resembles the C code,
this does not mean that we can automatically convert C programs to Hermes:
In general, C statements are not reversible, and their timing may depend on
data. But if an encryption algorithm is designed to be reversible and immune to
timing attacks, it will usually be simple to (manually) port to Hermes. But the
purpose is not to port existing C implementations of cyphers to Hermes, but to
allow cypher designers to develop their cyphers in a language that ensures both
reversibility and immunity to timing attacks.

encrypt (u32 v [2] , u32 k [4])
{

u32 v0 , v1 , sum, k0 , k1 , k2 , k3 ;
const u32 delta = 0x9E3779B9 ; /∗ key schedule constant ∗/
v0 <−> v [0] ; v1 <−> v [1] ; /∗ se t up ∗/
k0 += k [0] ; k1 += k [1] ; k2 += k [2] ; k3 += k [3] ; /∗ cache key ∗/
for (i=0; 32) { /∗ basic cyc le s ta r t ∗/

sum += delta ;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1) ;
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3) ;
i++;

} /∗ end cyc le ∗/
k0 −= k [0] ; k1 −= k [1] ; k2 −= k [2] ; k3 −= k [3] ; /∗ c lear l o ca l s ∗/
sum −= delta << 5; /∗ a l t e rna t i ve l y , sum −= 0xC6EF3720 ∗/
v [0] <−> v0 ; v [1] <−> v1 ; /∗ return coded values ∗/

}
Fig. 1. TEA in Hermes

Note that while the C version needs a separate decryption procedure, this
is not required in Hermes, as decryption is achieved by running the encryption
procedure backwards. Apart from using the swap operator <-> a lot, the Hermes
code is very similar to the encryption part of the C code, except that the local
variables are explicitly cleared. If they were not, an error would be reported
when running the program. Note that constants do not need to be cleared.

2 Hermes

The Syntax of Hermes is shown in Figure 3.
A program consists of one or more procedures, where the procedure called

main is the entry point of the program. Unlike in C, the main procedure has
no arguments. Arguments to procedures are passed by reference and to avoid
aliasing, no variable or array may be passed several times in the same call. For
simplicity, we do not allow global variables, but future versions of Hermes may
add these.

The values used in Hermes are variables or one-dimensional arrays the el-
ements of which are of the types i8, u8, i16, u16, i32, u32, i64 or u64,

265

void encrypt (uint32 t v [2] , uint32 t k [4]) {
uint32 t v0=v [0] , v1=v [1] , sum=0, i ; /∗ se t up ∗/
uint32 t delta=0x9E3779B9 ; /∗ key schedule constant ∗/
uint32 t k0=k [0] , k1=k [1] , k2=k [2] , k3=k [3] ; /∗ cache key ∗/
for (i=0; i<32; i++) { /∗ basic cyc le s ta r t ∗/

sum += delta ;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1) ;
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3) ;

} /∗ end cyc le ∗/
v[0]=v0 ; v[1]=v1 ;

}

void decrypt (uint32 t v [2] , uint32 t k [4]) {
uint32 t v0=v [0] , v1=v [1] , sum=0xC6EF3720, i ; /∗ sum=32∗de l ta ∗/
uint32 t delta=0x9E3779B9 ; /∗ key schedule constant ∗/
uint32 t k0=k [0] , k1=k [1] , k2=k [2] , k3=k [3] ; /∗ cache key ∗/
for (i=0; i<32; i++) { /∗ basic cyc le s ta r t ∗/

v1 −= ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3) ;
v0 −= ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1) ;
sum −= delta ;

} /∗ end cyc le ∗/
v[0]=v0 ; v[1]=v1 ;

}
Fig. 2. TEA in C

representing signed and unsigned 32 or 64-bit two’s complement numbers (cor-
responding to the C types int8_t, uint8_t, int16_t, uint16_t, int32_t,

uint32_t, int64_t and uint64_t). Sizes of arrays must be specified when they
are declared. All variables are local to procedures, and must be cleared to zero
before the end of the procedure. If a local variable is not zero at the exit of the
procedure, a run-time error is reported.

Constants are initialised with a value and can not be modified. Constants do
not need to be zeroed before procedure exit.

The body of a procedure is a statement. This can be

– The empty statement (;),
– An update using one of the update operators +=, -=, ^=, <<=, or >>=, where

the last two operators are rotate-left and rotate-right. The root variable on
the left-hand side is not allowed to occur elsewhere on the update statement
(neither left-hand side nor right-hand side). For example, the statements i
+= a[i]; and a[a[i]] += 1; are not allowed, but a[i] += i; is allowed, as
i is not the root variable on the left-hand side. Additionally, if the variable on
the left-hand side is a loop variable (see later), the right-hand side expression
must be a constant expression. Rotates are done on the word size of the
variable on the left-hand side. For example, if x is an 8-bit number, x <<=

11 will rotate the 8-bit number 3 positions left. Rotates are not found as
operators in C, but they are commonly used in cryptology, and they are
reversible, so it is natural to include them in Hermes.

– Increment or decrement of a variable or array element. These are special
cases of updates.

266

– A conditional update. In addition to the restrictions for unconditional up-
dates, the root variable on the left-hand side may not occur in the condi-
tion, nor may it be a loop variable. To avoid value-dependent timing, the
right-hand side is always evaluated and afterwards logically ANDed with the
condition before using the result in an update. As such, the conditional up-
date does not any power to the language, it just aids readability of otherwise
somewhat cryptic code.

– A swap of two variables or array elements, using the swap operator <->.
The root variables on either side may not occur in any index expression, nor
may they be loop variables. For example, the statements i <-> a[i]; and
a[a[i]] <-> j; are not allowed, but a[i] <-> a[j]; is allowed. A swap is
implemented as three updates (using ^=) to avoid introducing a temporary
variable that might leak information.

– A conditional swap. In addition to the restrictions of the normal swap, nei-
ther root variable may occur in the condition. A conditional swap is im-
plemented as three conditional updates, so it does not add power to the
language, but the conditional swap is easier to read. Conditional swap is
commonly used in elliptic-curve cryptography to avoid time-inconstant con-
ditional statements.

– A block in curly braces, consisting of a number of declarations and a number
of statements. Variables and array elements are initialised to 0 and they must
be returned to 0 at the end of the block (otherwise a run-time error is issued).

– A for loop. This specifies the initial and final values for a counter variable
and a body that will be executed until the counter variable reaches its final
value. Updating the counter variable is, unlike in C, done in the body of the
loop. The final value must be reached exactly, otherwise the loop continues.
The counter variable is local to the for loop and need not be declared (it is
always of type i32). The expressions for initial and final values for the loop
counter must be constant expressions. Also, the loop counter may only be
unconditionally updated with constant expressions, but it may be updated
multiple times and with any update operator (+=, -=, ^=, <<=, and >>=).

– An assertion. If the condition evaluates to false, a run-time error is issued.
This is included for testing purposes.

– A procedure call. Arguments are passed by reference. No variable may be
repeated in the argument list, so the statements call f(i, i);, call f(i,

a[i]);, and call f(a, a[i]); are illegal. To avoid potential modification,
loop variables can not be passed as arguments to procedures.

– An inverse procedure call. This executes the procedure in backwards order,
so the sequence call f(x); uncall f(x); has no net effect.

– Print and scan statements. These use format strings like in C, except that
the formats are %u8, %i8, %u16, %i16, etc. Before reading a variable or array
element, this must have the value 0, otherwise, a run-time error is issued.
After printing a variable or array element, this is set to 0. Loop variables
and constants can not be printed or scanned.

Expressions are variables, array elements, constants, operators applied to ex-
pressions, or conditions. Constants are numbers in decimal or hexadecimal form,

267

using C notation. Binary operators are +, -, *, /, %, &, |, ==, !=, <, >,

<=, >=, <<, and >>. Unary operators are - and ~. All operators have the same
meaning as in C, and like in C, there is no separate Boolean type – 0 is treated
as logical falsehood and all non-zero values as falsehood. Note that we do not
include the logical operators &&, ||, and !, as their timing may depend on the
values of their arguments. Bitwise logical operators should be used instead.

3 More Examples

An implementation of the speck128 cipher [1, 9] in C and Hermes is shown in
Figure 4.

Hermes has rotation built-in, so it does not need the ROR and ROLmacros. But
since Hermes does not support macros, R must be defined as a procedure. Since
loop variables can not be modified, it is not allowed to pass them as parameters
to procedures, so we use a variable ii to hold a copy of the loop variable i. The
Hermes version does not use separate parameters for the original and encrypted
text, since we want to use the encryption function in reverse for decryption. A
complication compared to a normal C implementation is that the round keys a
and b must be restored (in the second for-loop) so they can be reset to 0 before
the procedure exits. Note the use of uncall to do R in reverse.

While the Hermes version is slightly larger than the C version, a C program
would have to define separate functions for encryption and decryption.

To illustrate the use of conditional updates, Figure 5 shows a simple (and
probably weak) shift-register-based cipher. Note that, since the condition in
a conditional update may not involve the updated variable, the value of the
condition is computed in a variable c before the update. To ensure reversibility
of the procedure, c is returned (uncomputed) to 0 afterwards. We restrict K[0]
to be even to make this uncomputation possible.

Figure 6 includes C and Hermes versions of the central part of the RC5 ci-
pher [4,8], i.e., not including the key expansion part. Again, Hermes doesn’t need
the ROL macro, and we use a single parameter for the original and encrypted val-
ues (pt, ct), but we must pass the expanded keys (S[]) as a parameter since
we don’t have global variables. As usual, Hermes doesn’t need a separate de-
cryption function. The updates to A and B must in Hermes be done as sequences
of reversible updates, which is slightly more verbose, but also makes it clearer
that the transformations are, in fact, reversible.

4 Compiling Hermes to C

We have implemented a prototype of Hermes by writing a compiler from Hermes
to C. Each Hermes procedure is compiled to two C functions: One for running
forwards and one for running backwards. The backwards version of a procedure
is compiled by first doing a source-level inversion of the Hermes procedure and
then compiling the inverted procedure to C. A command-line option allows the

268

Program → Procedure+

Procedure → id (Decls2?) Stat

Stat → ;
| Lval update Exp ;
| Lval ++;
| Lval --;
| if (Exp) Lval update Exp ;
| Lval <->Lval
| if (Exp) Lval <->Lval
| for (id =Exp ; Exp) Stat
| assert (Exp);
| call id (Lvals)
| uncall id (Lvals)
| printf (stringConst , Lvals);
| scanf (stringConst , Lvals);

| { Decls1 Stat∗}

Exp → Lval
| numConst
| Exp binOp Exp
| unOp Exp
| (Exp)

Lval → id
| id [Exp]

Lvals → Lval
| Lval , Lvals

V arSpec → id
| id [numConst]

V arSpecs → V arSpec
| V arSpec , V arSpecs

Decls1 →
| type V arSpecs ; Decls1
| const type id = numConst ; Decls1

Decls2 → type V arSpec
| type V arSpec , Decls2

Fig. 3. Syntax of Hermes

269

#include <stdint .h>

#define ROR(x , r) ((x >> r) | (x << (64 − r)))
#define ROL(x , r) ((x << r) | (x >> (64 − r)))
#define R(x , y , k) (x = ROR(x ,8) , x += y , x ˆ= k , y = ROL(y ,3) , y ˆ= x)
#define ROUNDS 32

void encrypt (uint64 t ct [2] ,
uint64 t const pt [2] ,
uint64 t const K[2])

{
uint64 t y = pt [0] , x = pt [1] , b = K[0] , a = K[1] ;

R(x , y , b) ;
for (int i = 0; i < ROUNDS − 1; i++) {

R(a , b , i) ;
R(x , y , b) ;

}

ct [0] = y ;
ct [1] = x ;

}

R(u64 x , u64 y , u64 k)
{ x >>= 8; x += y ; x ˆ= k ; y <<= 3; y ˆ= x ; }

speck128 (u64 ct [2] , u64 K[2])
{

u64 y , x , b , a , i i ;
y <−> ct [0] ; x <−> ct [1] ; b += K[0] ; a += K[1] ;

c a l l R(x , y , b) ;
for (i=0; 32) {

c a l l R(a , b , i i) ;
c a l l R(x , y , b) ;
i i++; i++;

}
for (i=32; 0) { /∗ restore a and b ∗/

i−−; i i −−;
uncal l R(a , b , i i) ;

}
y <−> ct [0] ; x <−> ct [1] ; b −= K[0] ; a −= K[1] ;

}
Fig. 4. Spec128 in C (top) and Hermes (bottom)

sh i f t (u64 v , u64 K[2])
{

u64 a , b , c ;
a += K[0] ; b += K[1] ; /∗ K[0] must be even ∗/
for (i=0; 13) {

c ˆ= v & 1; i f (c) v += a ; c ˆ= v & 1;
v ˆ= b ; v <<= 5; i++;

}
a −= K[0] ; b −= K[1] ;

}
Fig. 5. Simple shift-register block cipher

270

void RC5ENCRYPT(WORD ∗pt , WORD ∗ct)
{

WORD i , A = pt [0] + S [0] , B = pt [1] + S [1] ;

for (i = 1; i <= 12; i++)
{

A = ROL(A ˆ B, B) + S[2∗ i] ;
B = ROL(B ˆ A, A) + S[2∗ i + 1] ;

}
ct [0] = A; ct [1] = B;

}

rc5 (u32 ct [2] , u32 S [25])
{

u32 A, B;
A <−> ct [0] ; B <−> ct [1] ;
A += S [0] ; B += S [1] ;

for (i=1; 13) {
A ˆ= B; A<<= B; A += S[2∗ i] ;
B ˆ= A; B <<= A; B += S[2∗ i +1];
i++;

}
ct [0] <−> A; ct [1] <−> B;

}
Fig. 6. RC5 in C (top) and Hermes (bottom)

whole program to be executed backwards. Since Hermes (like Janus) is designed
to be locally reversible, inversion of procedures is simple.

Individual Hermes statements are fairly straightforward to compile to C.
The compiler inserts the checks and forced zeroing required for reversibility and
compiles statements to time-invariant C. An issue with using C as the target
language is that the C compiler may optimise away the statements that clear
local variables, hence allowing information to leak. Other optimisations may
make timing depend on the actual data, leading to another form of information
leak. We are investigating using the zerostack modification of Clang/LLVM [5],
which aims to avoid such compiler-introduced leaks.

5 Future Work

To ensure reversibility and avoid information leaks, a number of conditions are
tested at run-time: That variables and arrays are zeroed before returning from
a procedure, that variables are zero before a scan statement, as well as explicit
assertions. We will investigate whether some of these conditions can be verified
at compile time, both to reduce the size of the target code, to reduce the running
time, and, if all conditions can be verified at compile time, to guarantee that
programs will never fail these conditions at run-time.

The speck128 example used a copy of a loop counter variable because loop
counters can not be passed as arguments to procedures. We plan to add pro-

271

cedure parameters that can not be modified inside the procedure, which would
allow loop counters to be passed as arguments.

Some of the restrictions for timing-sensitive control can be relaxed if we add
variables that are declared to be non-secret. These can, for example, be used
for the size of the key or data. Statements that are conditional only on non-
secret variables need not be time invariant, as no secret is leaked by this variable
timing. This will allow recursion based on, say, the size of data. Loop bound
expressions can use non-secret variables, and loop counter variables themselves
can be categorised as non-secret. So we plan to add such in future versions of
Hermes.

Because if the issues with using C as a target language, we plan to make a
compiler to low-level code that ensures that variables are cleared and execution
is time invariant. This may use some form of proof-carrying [3] code to allow
verification of these properties.

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. https://eprint.iacr.org/

2013/404.
2. C. Lutz. Janus: a time-reversible language. A letter to Landauer.

http:://www.tetsuo.jp/ref/janus.pdf, 1986.
3. George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’97, pages
106–119, New York, NY, USA, 1997. ACM.

4. Ronald L. Rivest. The RC5 encryption algorithm. Dr. Dobb’s Journal, 20(1):146–
148, January 1995.

5. L. Simon, D. Chisnall, and R. Anderson. What you get is what you C: Controlling
side effects in mainstream C compilers. In 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 1–15, April 2018.

6. Dominik Táborský, Ken Friis Larsen, and Michael Kirkedal Thomsen. Encryption
and reversible computations - work-in-progress paper. In Reversible Computation
- 10th International Conference, RC 2018, Leicester, UK, September 12-14, 2018,
Proceedings, pages 331–338, 2018.

7. David J. Wheeler and Roger M. Needham. TEA, a tiny encryption algorithm. In
Bart Preneel, editor, Fast Software Encryption, pages 363–366, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

8. Wikipedia. Rc5. https://en.wikipedia.org/wiki/RC5,
Accessed February 2019.

9. Wikipedia. Speck (cipher). https://en.wikipedia.org/wiki/Speck_(cipher),
Accessed February 2019.

10. Wikipedia. Tiny encryption algorithm. https://en.wikipedia.org/wiki/Tiny_

Encryption_Algorithm,
Accessed January 2019.

11. Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Principles of a re-
versible programming language. In Proceedings of the 5th conference on Computing
frontiers, CF ’08, pages 43–54, New York, NY, USA, 2008. ACM.

272

An Ontology-based Approach to the Agile Requirements
Engineering

Marina Murtazina1[0000-0001-6243-9308] and Tatiana Avdeenko1[0000-0002-8614-5934]

1Novosibirsk State Technical University, 630073 Novosibirsk, Russia
murtazina@corp.nstu.ru

Abstract. The paper presents an approach to the agile requirements engineering
based on the OWL ontologies. A brief overview of the benefits of an ontology-
based approach to requirements engineering is given. Attention is focused on
agile engineering requirements process. The proposed approach uses three in-
terrelated and complementary ontologies. The first ontology is used to represent
knowledge about the agile requirements engineering process. The second ontol-
ogy is designed to match natural language sentences with the requirements in
order to identify conflicts. The third ontology is used to accumulate the
knowledge about the domain of the software product. The first ontology is
core. This ontology consists of classes corresponding to events, roles and arte-
facts of agile development. Object properties established between the individu-
als of class can be used to identify directly or indirectly linked requirements and
requirements artefacts. This enables maintaining requirements traceability. Also
the ontology takes into account particular qualities of working with the re-
quirements in agile development processes including knowledge about the crite-
ria for assessing the quality of user stories being the most common form to rec-
ord the requirements in agile methods. The ontologies are implemented in the
Protégé environment.

Keywords: Requirements engineering, Ontology, Agile Environment.

1 Introduction

The success of software products depends on the extent to which they, as tools, can be
effectively used in the implementation of the end user tasks. That is why requirements
engineering plays a key role in the software development. The requirements engineer-
ing as a field of knowledge includes elicitation, analysis, specification and validation
of the requirements [1]. By their nature, the software requirements represent complex
knowledge that is extracted in the process of requirements engineering from various
sources, including many stakeholders, whose views on the developed product can be
diametrically opposed. In this regard, the requirements can be considered as a result
of alternative solutions in the field of determining functional and qualitative charac-
teristics of the software.

The decision making process in requirements engineering depends greatly on the
experience and intuition of the development team. In particular, the team members

273

use their experience in analyzing feasibility and determining complexity of the re-
quirements, identifying inconsistencies and incompleteness in the requirements sets,
forecasting implementation deadlines, assessing implementation risks, etc. Frequent
modifications of the requirements inherent to the agile development methodologies as
a reaction to changes in the business environment, requires permanent monitoring on
the consistency of the requirements specification and the actual priority of the soft-
ware product functions. Therefore, the ability to quickly identify and resolve conflict-
ing requirements, and also revise priorities to meet new requirements, is critical to the
development of the software development project.

The scientific discourse of recent years is characterized by a focus on the applica-
tion of ontological models to the software development process [2-4]. Ontologies
provide a formal representation of knowledge and relationships between the concepts
used in the software development. Ontologies can be used for requirements analysis
and specification phases [5]. Ontologies allow to expand the possibilities of model-
driven requirements engineering (MDRE) through the use of machine reasoning.
Over the past few years ontology-driven requirements engineering (ODRE) has be-
come a leading trend [6].

The success of the ontological approach in the requirements engineering is deter-
mined by its capabilities, such as availability of the domain vocabulary, formulating
knowledge about the application area and its reuse, understanding the problem area,
improving communication between specialists from different fields [7]. Ontologies in
the requirements engineering are used to formalize the structure of documents for
working with the requirements, to represent the types of the requirements and
knowledge about the domain of the software product [8]. Ontologies also allow for-
mulating the rules (axioms) for reasoning about traceability, consistency and com-
pleteness of the requirements [9]. The ontological approach is useful for comparing
stakeholders' points of view on different subsystems of a single information system
[10].

Ontologies can be used to improve the requirements development [11] and re-
quirements management [12] in agile software development process. Ontological
approach to the requirements engineering allows to improve the process of user story
formulation [13], to facilitate verification of compliance with the quality characteris-
tics of individual user stories and sets of user stories [14], as well as to obtain more
accurate assessments of the efforts required to implement user stories [15]. Summa-
rizing the above, it should be noted that most studies of the possibilities of using on-
tologies in requirements engineering do not take into account the specifics of the pro-
ject management life cycle or the software development life cycle. To the best of our
knowledge, very few papers apply ontology-based approach to the agile project de-
velopment. However, it seems that the application of the ontology-base approach can
be especially valuable for agile development. It is precisely under conditions of per-
manent changes in the requirements and their priorities inherent to the agile develop-
ment that knowledge engineering methods prove to be especially useful. Representa-
tion of knowledge about the project requirements in the form of ontologies allows the
use of machine reasoning methods that can be used for discovering logical inconsist-
encies.

274

In the present paper we propose an ontology-based approach to the agile require-
ments engineering using a system of three ontologies. The first ontology is needed to
represent knowledge about the agile requirements engineering process, the second one
is designed to match natural language sentences with the requirements in order to
identify conflicts, the third ontology is used to accumulate the knowledge about the
domain of the software product. The paper is organized as follows. In Section 2 we
provide a review of the research topic and the terminology used. In Section 3 we de-
fine the ontology for agile requirements engineering process. In section 4, we give
conclusions about the prospects of using this approach in agile software development.

2 Theoretical background

2.1 Requirements engineering in agile software development

In agile development, the software requirements specification (SRS) is an integrated
requirements package which is maintained up to date. This package is not a single
physical document, but a logical structure filled with requirements for a software
product.

To date, the Scrum framework is the most popular among the agile project man-
agement framework. The basis of Scrum is the theory of empirical control. According
to this theory, the source of knowledge is experience, and the source of solutions is
real data. The basic scheme of the Scrum framework work is presented in Fig.1.

Fig.1. The basic scheme of the Scrum framework work

According to Agile Manifesto [16], agile development encourages the creation of
the minimum amount of documentation necessary to manage and coordinate the pro-
ject participants work in developing a software product. When a software project is
launched, it is not necessary to create a comprehensive requirements document. First,
the document “Vision and Scope” is developed. This document determines the stake-

275

holders vision on the software being developed in terms of the key needs and con-
straints under which the project will be implemented.

Next, the work begins on filling the Product Backlog, which is a prioritized list of
currently existing product requirements, which is never complete. Product backlog
items can be divided into product features, defect, technical work, knowledge acquisi-
tion by type of work [17]. Product feature is a unit of functionality of a software
product that satisfies a requirement. The remaining three types of product backlog
items are needed to plan the work on eliminating defects, refactoring, database migra-
tion, research, necessary to implement the requirements of any type, etc.

Before a feature is scheduled for a sprint, it is necessary to decompose it into small
user stories, develop basic behavior scenarios, evaluate implementation efforts, identi-
fy dependences on other user stories, and determine the priority. It is also necessary to
analyze low priority user stories. Perhaps these product backlog items became im-
portant, or, on the contrary, so unimportant that they should be removed. This work is
done by the Product Owner together with the development team as a part of the Back-
log grooming.

Backlog grooming (product backlog refinement or grooming) is an activity
throughout the sprint aimed at revising the backlog of the product to prepare its prod-
uct for the next sprint planning. Backlog grooming helps ensure that the requirements
will be clarified, and user stories will be prepared for work in advance of planning for
the sprint. As a result of Backlog grooming, the top of the Product Backlog should
include user stories prepared for sprint. In this case, such user stories should be
enough for 2-3 sprints. User stories should be clear to all team members, evaluated by
the team, and acceptance criteria should be indicated for the stories. The acceptance
criteria can be written in the form of simple sentences or behavior scenarios, in par-
ticular, in the form of Gherkin scenarios that uses the simple syntax “Given-When-
Then”.

2.2 User stories

Initially, user stories were recorded on cards of small sizes. The card is not in-
tended to collect all information about the requirement. The card must contain several
sentences that reflect the essence of the requirement. The card usually indicates the
identifier, name, text, acceptance criteria and its assessment (priority, risk, evaluation
of the efforts, etc.). The user story should follow the following pattern:

As a <type of user X >, I want <some goal Y>, So that <some reason Z>
Nevertheless, it is easy to make a lot of mistakes when formulating a user story.

Suppose it is necessary to describe the functionality that will allow the social network
users to sell stickers sets that they can add to the messages. In this case, the user has a
standard free stickers set. Then, suppose the story was formulated as follows:

 “As a user, I want to add sticker sets from the paid collection,
So that I can see new stickers in my sticker sets”.

In this user story the type of the user is not specified, so there is no understanding
what problem the user solves, what is the user motivation. If the users of the system
were divided into two types – logged-in users and visitors, then in this user story,

276

apparently, a logged-in user would be assumed, and, most likely, the developer would
immediately understand this and without losing time on figuring out the type of the
user will be able to implement the feature correctly. But if the logged-in users were in
turn divided into subclasses (for example, there were the users with a premium ac-
count for which the service described in the user story should already be included in
the payment), the feature might be implemented incorrectly, or the developer would
spend time clarifying out what type the user belongs. In order to avoid mistakes in the
first part of the user history, it is reasonable to build a domain model of hierarchically
related user types, followed by an agreement on the formulation of a user story indi-
cating a specific type of the user from the domain model, and not just “user”. Moreo-
ver, the above user story inaccurately defines user’s action (the second part) and us-
er’s motivation (the third part). So it is better to formulate it as follows:

“As a logged-in user, I want to buy new stickers sets,
So that I can decorate my messages with non-standard stickers”.

So, formulating the user story is one of the cornerstones of agile engineering re-
quirements. Despite the huge popularity of user stories for agile development, there
are only a few numbers of methods to assess their quality. Many existing approaches
use the INVEST model proposed in 2003 by Bill Wake. According to this model, user
story should be: Independent, Negotiable, Valuable, Estimable, Small, Testable [18].

The development of a user stories list for the project can be preceded by the con-
struction of the Feature tree [19]. Feature tree is a high-level hierarchical diagram
illustrating the dependencies between the features of a software product. The Product
Owner begins building the Feature tree in Sprint 0. The start of the Feature tree can be
generated based on information from the document “Vision and Scope”. The Feature
tree is constantly evolving since all product features are usually undefined during
sprint 0. Further, the items of the Feature tree are added to the Product backlog,
where they are supplemented with user stories.

3 OWL ontology for agile requirements engineering

In this paper, it is proposed to use the OWL ontology system to support the re-
quirements engineering. The first ontology contains knowledge of requirements engi-
neering within the framework of an agile approach including knowledge about types
of requirements. The second ontology contains knowledge for identifying conflicting
requirements. The third one is a domain model that includes a software product fea-
ture tree, a user roles model and the connections between them.

In Fig.2 we show the taxonomy of the upper level classes for the ontology
“Guide”, and also object properties reflecting relations between the ontology classes.
The ontology “Guide” consists of classes corresponding to events, roles and artefacts
of agile development. The instances (individuals) of the ontology classes are the soft-
ware requirements and their artefacts, as well as information about the development
team and stakeholders. Object properties reflect relations that can be established be-
tween individuals. For example, to specify the relationship “the requirement refines
another requirement” the object property “refines” is used. This object property, in

277

turn, includes as subproperties that can be established between different classes (or
individuals) of requirements artefacts which are also requirements by their nature (for
example, the behavior scenario refines user story). Object property “traceFrom” is
intended to define bottom-up tracing links. For the object property “traceFrom” and
its subproperties, inverse properties are given through the “Inverse Of” relationship.
This allows the top-down tracing of the “traceTo” relationship.

Fig.2.The taxonomy of the upper level classes for ontology “Guide” and object properties

Object property “conflicts” enables specifying that the requirements conflict with
each other. This can be done directly in this ontology or transferred from the addition-
al ontology “Detection of conflicts in the requirements”. Fig.3 lists the objects proper-
ties for this ontology and their domains and ranges.

Individuals of the ontology “Detection of conflicts in the requirements” are ele-
ments extracted from the requirements text. The sentence that expresses a require-
ment, regardless of the technique used for recording requirements, can be divided into
the following main parts: the subject, the action, and the object to which the action of
the subject is directed. To identify conflicts between user stories it is necessary to
extract the functional user role, the action and the object to which the action is di-
rected, from the user story text. Object properties “sameAsActor”, “sameAsAction”
and “sameAsObject” are set between instances of the corresponding classes if the
same name is used for the elements of two requirements or the full name in one and
an abbreviation in the second. Object properties “isaActor” and “isaObject” are used
to establish hierarchical relations. For example, a senior manager is a manager. Object
properties “antonymsAction” and “antonymsObject” are set between instances of the
corresponding classes if they have the opposite value (for example, “my comment
about the product” and “someone else's comment about the product”). Object proper-
ties “partOfAction” and “partOfObject” are set between instances of the respective
classes if one is part of the other. Object properties “synonymsActor”, “synonymsAc-
tion” and “synonymsObject” are set if the values of the corresponding requirements
elements have a synonymous value. In all other cases it is considered that the corre-
sponding elements of the requirements are bound by object property “no-
relationActor”, “no-relationAction” or “no-relationObject”.

The following production rules are used to determine the type of relations between
any two requirements:

278

If ObjectProperty_between_class_instances (Actor1, Actor2)
AND ObjectProperty_between_class_instances (Action1, Action2)
AND ObjectProperty_between_class_instances (Object1, Object2) Then

Object properties_between_class_instances (Requirement1, Requirement2)

Fig.3. Classes and object properties of the ontology “Detection of conflicts in the requirements”

Relations between actors, actions and objects can be established on the basis of in-
formation from the domain ontology as well as using linguistic ontologies, such as
WordNet.

To illustrate the idea of the proposed approach to the formation of a software prod-
uct domain model in the form of an OWL ontology, we consider a fragment of the
ontology for an online store (Fig.4).

Fig.4. The ontology «OnlineStore»

When building the software product domain ontology it is necessary to analyze the
user roles (class “User”) and also to decide which software product sections the users

279

can work with (class “Office”) and to build a Feature tree (class “Features”). Then, it
should be determined which sections can be used by certain users, and also indicate
which features are associated with these sections. Instances of the class “Object” are
objects the user works with (for example, a sales report or a search string). Instances
of the class “Action” are verbs that are used to describe user actions. Actions can be
divided into four operations: reading, adding, editing, deleting. In this example, users
are divided into groups depending on the two properties “isLogin” and “isRegis-
tered”. The knowledge of which office the user has is also used to assign a class to the
user.

A list of the features available in the office is indicated for each class of the corre-
sponding office. Subclasses of personal offices automatically inherit features set for
the classes to which they belong.

4 Conclusion and future work

The OWL ontology system containing three ontologies was developed based on the
analysis of the results of ontology application in requirements engineering. The first
ontology accumulates knowledge about the development of software products in an
agile environment. The second one contains knowledge about the relations between
the elements of sentence with a requirement (role, action, object). This allows analyz-
ing pairs of requirements in order to identify conflicts. The third one contains
knowledge of the software product domain.

We have developed a model which enables solving typical problems for require-
ments engineering in agile software development. These include the formation and
refinement of the Product backlog, requirements tracing and the conflicting require-
ments identification. The next stage of our research will include the development of
the algorithm for prioritizing and re-prioritizing requirements based on the business
value of the product backlog item, assessment of the efforts to requirements imple-
ment and risks, as well as the dependencies between product backlog items that are
recorded in the ontology.

Acknowledgments

The reported study was funded by Russian Ministry of Education and Science, ac-
cording to the research project No. 2.2327.2017/4.6.

References

1. ISO/IEC. Software Engineering - Guide to the software engineering body of knowledge
(SWEBOK).2nd edn. ISO/IEC TR 19759 (2015).

2. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Improving agile re-
quirements: the quality user story framework and tool. Requirements Engineering
21.3(2016): 383-403.

280

3. de Souzam P.L., do Pradom A.F., de Souzam W.L., dos Santos Forghieri Pereiram S.M.,
Piresm L.F.: Improving Agile Software Development with Domain Ontologies. In: 15th
International Conference on Information Technology – New Generations Information
Technology-New Generations. pp. 267-274. Springer, Cham (2018).

4. Sitthithanasakul, S., Choosri, N.: Using ontology to enhance requirement engineering in
agile software process. In: 2016 10th International Conference on Software, Knowledge,
Information Management & Applications (SKIMA). IEEE (2016).

5. Bhatia, M. P. S., Kumar, A., Beniwal R.: Ontologies for Software Engineering: Past, Pre-
sent and Future. Indian Journal of Science and Technology 9(9),
http://www.indjst.org/index.php/indjst/article/view/71384/67982, last accessed
2019/02/02.

6. Siegemund, K., Thomas, E. J., Zhao, Y., Pan, J., Assmann U.: Towards Ontology-driven
Requirements Engineering. In: Proceedings of the 7th International Workshop on Semantic
Web Enabled Software Engineering (SWESE’11), Germany (2011).

7. Valaski, J., Reinehr, S., Malucelli A.: Which Roles Ontologies play on Software Require-
ments Engineering. In: International Conference on Software Engineering Research and
Practice, pp. 24-30, CSREA Press (2016).

8. Castañeda, V., Ballejos, L., Caliusco, M. L., Galli,M.R.: The use of ontologies in require-
ments engineering. Global Journal of Research In Engineering, 10(6), 2–8 (2010).

9. Goknil, A., Kurtev, I., van den Berg, K.: A Metamodeling Approach for Reasoning about
Requirements. In: Schieferdecker, I., Hartman, A. (eds.) Model Driven Architecture –
Foundations and Applications. ECMDA-FA 2008. Lecture Notes in Computer Science, vol
5095, pp. 310-325. Springer, Berlin, Heidelberg (2008).

10. Assawamekin, N., Sunetnanta, T., Pluempitiwiriyawej, C.: Ontology-based multiperspec-
tive requirements traceability framework. Knowledge and Information Systems, 25(3),
493-522 (2010).

11. Sitthithanasakul S, Choosri N. Using ontology to enhance requirement engineering in agile
software process. 2016 10th International Conference on Software, Knowledge, Infor-
mation Management & Applications, pp. 181-186. IEEE (2017).

12. Avdeenko, T., Murtazina, M.: Intelligent Support of Requirements Management in Agile
Environment. In: Borangiu, T., Trentesaux, D., Thomas, A., Cavalieri, S. (eds.) Service
Orientation in Holonic and Multi-Agent Manufacturing. SOHOMA 2018. Studies in Com-
putational Intelligence, vol 803, pp. 97-108. Springer, Cham (2019).

13. Thamrongchote, С.,Vatanawood, W.: Business process ontology for defining user story.
In: 15th International Conference on Computer and Information Science. IEEE, Okayama,
Japan (2016).

14. Murtazina, M.S., Avdeenko, T.V.: Ontology-Based Approach to the Requirements Engi-
neering in Agile Environment. In: Actual Problems of Electronics Instrument Engineering
(APEIE) 2018 XIV International Scientific-Technical Conference on, pp. 496-501. IEEE,
Novosibirsk, Russia (2018).

15. Adnan, M., Afzal, M.: Ontology Based Multiagent Effort Estimation System for Scrum
Agile Method. In: IEEE Access, vol. 5, pp. 25993-26005. IEEE (2017).

16. Agile Manifesto, https://agilemanifesto.org/, last accessed 2019/02/02.
17. Rubin, K. S.: Essential Scrum: A Practical Guide to the Most Popular Agile Process. Addi-

son-Wesley (2013).
18. Wake, B.: INVEST in Good Stories, and SMART Tasks, https://xp123.com/articles/invest-

in-good-stories-and-smart-tasks/, last accessed 2019/02/02.
19. Babar, M. A., Brown, A. W., Mistrik I.: Agile Software Architecture: Aligning Agile Pro-

cesses and Software Architectures (1st ed.). Elsevier, Waltham, MA, USA (2013).

281

Verification and Validation of Semantic
Annotations

Oleksandra Panasiuk, Omar Holzknecht, Umutcan Şimşek, Elias Kärle and
Dieter Fensel

University of Innsbruck, Technikerstrasse 21a, Innsbruck 6020, Austria,
firstname.lastname@sti2.at

Abstract. In this paper, we propose a framework to perform verifica-
tion and validation of semantically annotated data. The annotations,
extracted from websites, are verified against the schema.org vocabulary
and Domain Specifications to ensure the syntactic correctness and com-
pleteness of the annotations. The Domain Specifications allow check-
ing the compliance of annotations against corresponding domain-specific
constraints. The validation mechanism will detect errors and inconsis-
tencies between the content of the analyzed schema.org annotations and
the content of the web pages where the annotations were found.

Keywords: verification · validation · semantic annotation · schema.org.

1 Introduction

The introduction of the Semantic Web [3] changed the way content, data and ser-
vices are published and consumed online fundamentally. For the first time, data
in websites becomes not only machine-readable, but also machine understand-
and interpretable. The semantic description of resources is driving the develop-
ment of a new generation of applications, like intelligent personal assistants and
chatbots, and the development of knowledge graphs and artificial intelligence ap-
plications. The use of semantic annotations was accelerated by the introduction
of schema.org [8]. Schema.org was launched by the search engines Bing, Google,
Yahoo! and Yandex in 2011. It has since become a de-facto standard for annotat-
ing data on the web [15]. The schema.org vocabulary, serialized with Microdata,
RDFa, or JSON-LD, is used to mark up website content. Schema.org is the most
widespread vocabulary on the web, and is used on more than a quarter of web
pages [9,14].

Even though studies have shown that the amount of semantically anno-
tated websites are growing rapidly, there are still shortcomings when it comes
to the quality of annotations [12,17]. Also the analyses in [10,1] underline the
inconsistencies and syntactic and semantic errors in semantic annotations. The
lack of completeness and correctness of the semantic annotations makes content
unreachable for automated agents, causes incorrect appearances in knowledge
graphs and search results, or makes crawling and reasoning less effective for

282

2 O. Panasiuk, O. Holzknecht, U. Şimşek, E. Kärle and D. Fensel

building applications on top of semantic annotations. These errors may be caused
by missing guidelines, insufficient expertise and technical or human errors. Data
quality is a critical aspect for efficient knowledge representation and processing.
Therefore, it is important to define methods and techniques for semantic data
verification and validation, and to develop tools which will make this process
efficient, tangible and understandable, also for non-technical users.

In this paper, we extend our previous work [21], where we introduced a Do-
main Specification, and present an approach for verification and validation of
semantic annotations. A Domain Specification (DS) is a design pattern for se-
mantic annotations; an extended subset of types, properties, and ranges from
schema.org. The semantify.it Evaluator1is a developed tool that allows the ver-
ification and validation of schema.org annotations which are collected from web
pages. Those annotations can be verified against the schema.org vocabulary and
Domain Specifications. The verification against Domain Specifications allows for
the checking of the compliance of annotations against corresponding domain-
specific constraints. The validation approach extends the functionality of the
tool by detecting the consistency errors between semantic annotations and an-
notated content.

The remainder of this paper is structured as follows: Section 2 describes the
verification approach of semantic annotations. Section 3 describes the validation
approach. Section 4 concludes our work and describes future work.

2 Verification

In this section we discuss the verification process of semantic annotations ac-
cording to schema.org and Domain Specifications. The section is structured as
follows: Section 2.1 gives the definition of the semantic annotation verification,
Section 2.2 describes related work, section 2.3 discusses our approach, and Sec-
tion 2.4 describes the evaluation method.

2.1 Definition

The verification process of semantic annotations consists of two parts, namely,
(I) checking the conformance with the schema.org vocabulary, and (II) checking
the compliance with an appropriate Domain Specification. While the first verifi-
cation step ensures that the annotation uses proper vocabulary terms defined in
schema.org and its extensions, the second step ensures that the annotation is in
compliance with the domain-specific constraints defined in a corresponding DS.

2.2 Related Work

In this section, we refer to the existing approaches and tools to verify struc-
tured data. There are tools for verifying schema.org annotations, such as the

1 https://semantify.it/evaluator

283

Verification and Validation of Semantic Annotations 3

Google Structured Data Testing tool2, the Google Email Markup Tester3, the
Yandex Structured Data Validator4, and the Bing Markup Validator 5. They
verify annotations of web pages that use Microdata, Microformats, RDFa, or
JSON-LD as markup formats against schema.org. But these tools do not pro-
vide the check of completeness and correctness. For example, they can allow one
to have empty range values, redundancy of information, or semantic consistency
issues (e.g. the end day of the event is earlier than the start day). In [7] SPARQL
and SPIN are used for constraint formulation and data quality check. The use
of SPARQL and SPIN query template sets allows the identification of syntax er-
rors, missing values, unique value violations, out of range values, and functional
dependency violations. The Shape Expression (ShEx) definition language [20]
allows RDF verification6 through the declaration of constraints. In [4] authors
define a schema formalism for describing the topology of an RDF graph that
uses regular bag expressions (RBEs) to define constraints. In [5] the authors de-
scribed the semantics of Shapes Schemas for RDF, and presented two algorithms
for the verification of an RDF graph against a Shapes Schema. The Shapes Con-
straint Language7 (SHACL) is a language for formulating structural constraints
on RDF graphs. SHACL allows us to define constraints targeting specific nodes
in a data graph based on their type, identifier, or a SPARQL query. The existing
approaches can be adapted for our needs but not fully, as they are developed for
RDF graph verification and not for schema.org annotations in particular.

2.3 Our approach

To enable the verification of semantic annotations according to the schema.org
vocabulary and to Domain Specifications, we developed a tool that executes a
corresponding verification algorithm. This tool takes as inputs the schema.org
annotation to verify and a DS that corresponds to the domain of the annotation.
The outcome of this verification process is provided in a formalized, structured
format, to enable the further machine processing of the verification result.

The verification algorithm consists of two parts, the first checks the general
compliance of the input annotation with the schema.org vocabulary, while the
latter checks the domain-specific compliance of the input annotation with the
given Domain Specification. The following objectives are given for the conformity
verification of the input annotation according to the schema.org vocabulary:

1. The correct usage of serialization formats allowed by schema.org, hence
RDFa, Microdata, or JSON-LD.

2. The correct usage of vocabulary terms from schema.org in the annotations,
including types, properties, enumerations, and literals (data types).

2 https://search.google.com/structured-data/testing-tool/
3 https://www.google.com/webmasters/markup-tester/
4 https://webmaster.yandex.com/tools/microtest/
5 https://www.bing.com/toolbox/markup-validator
6 Authors use term ”validation” in their paper due to content definition.
7 https://www.w3.org/TR/shacl-ucr/

284

4 O. Panasiuk, O. Holzknecht, U. Şimşek, E. Kärle and D. Fensel

3. The correct usage of vocabulary relationships from schema.org in the anno-
tations, hence, the compliance with domain and range definitions for prop-
erties.

The domain-specific verification of the input annotation is enabled through
the use of Domain Specifications8, e.g. DS for annotation of tourism domain
and GeoData [18,19]. Domain Specifications have a standardized data model.
This data model consists of the possible specification nodes with corresponding
attributes that can be used to create a DS document (e.g. specification nodes
for types, properties, ranges, etc.). A DS document is constructed by the recur-
sive selection of these grammar nodes, which, as a result, form a specific syntax
(structure) that has to be satisfied by the verified annotations [11]. Keywords
in these specification nodes allow the definition of additional constraints (e.g.
”multipleValuesAllowed” or ”isOptional” for property nodes). In our approach,
the verification algorithm has to ensure that the input annotation is in com-
pliance with the domain-specific constraints defined by the input DS. In order
to achieve this, the verification tool has to be able to understand the DS data
model, the possible constraint definitions, and to check if verified annotations
are in compliance with them.

2.4 Evaluation

We implement our approach in the semantify.it Evaluator9. The tool provides a
verification report with detailed information about detected errors according to
the schema.org vocabulary (see Fig.1) and Domain Specifications (see Fig.2).

Fig. 1. Schema.org Verification

Besides the verification result itself, the report includes details about the
detected errors, e.g. error codes (ID of the error type), error titles, error sever-
ity levels, error paths (where within the annotation the error occurred), and
textual descriptions of the errors. The implementation itself can be evaluated

8 List of available Domain Specifications: https://semantify.it/

domainSpecifications/public
9 https://semantify.it/evaluator

285

Verification and Validation of Semantic Annotations 5

Fig. 2. Domain Specification Verification. Verification Report

through unit tests in terms of a correct functionality (correctness) and the im-
plementation of all possible constraint possibilities of the Domain Specification
vocabulary (completeness). This can be achieved by comparing the structured
representation of the result, namely the JSON file produced by the verification
algorithm, which is used to generate a human-readable verification report for
the user (see Fig.3), with the expected verification report outcome specified in
the test cases for predefined annotation-Domain Specification pairs.

Fig. 3. semantify.it Evaluator. Verification and Validation Report

A formal proof of the correctness and completeness of our implemented al-
gorithm is rather straight forward given the simplicity of our current knowledge
representation formalism. In our ongoing work10, we develop a richer constraint
language which will require more detailed analysis of these issues.

3 Validation

Search engines may penalize the publisher of structured data if their annotations
include content that is invisible to users, and/or markup irrelevant or mislead-

10 The paper is under double blind review and can’t be revealed

286

6 O. Panasiuk, O. Holzknecht, U. Şimşek, E. Kärle and D. Fensel

ing content. These penalties may have negative effects on a website (e.g. bad
position of the website in search results) or even lead to a non-integration of
the structured data (e.g. no generation of rich snippets). For example, annota-
tions of the Destination Management Organizations (DMOs) usually include a
list of offers. These offers must comply with offers which are described on the
website, and all URLs contained in the annotations must match with the URLs
in the content. Such issues can be detected through the validation of semantic
annotations.

In this section, we discuss the validation process of semantic annotations and
the proposed approach. The section is structured as follows: Section 3.1 gives
the definition of the semantic annotation validation, Section 3.2 describes some
related work, Section 3.3 discusses our approach, and Section 3.4 describes the
evaluation method.

3.1 Definition

The validation of semantic annotations is the process of checking whether the
content of a semantic annotation corresponds to the content of the web page
that it represents, and if it is consistent with it. Semantic annotations should
include the actual information of the web page, correct links, images and literal
values without overlapping or redundancy.

3.2 Related Work

The incorrect representation of the structured data can make data unreachable
for automated engines, cause an incorrect appearance in the search results, or
make crawling and reasoning less effective for building applications on top of se-
mantic data. The errors may be caused by not following recommended guidelines,
e.g. structured data guidelines11, insufficient expertise, technical or human errors
(some of the issues can be detected by Google search console12), and/or annota-
tions not being in accordance with the content of web pages, so-called ”spammy
structured markup”13. There is no direct literature related to the methods of
detecting inconsistency between semantic annotations and content of web pages,
but the problem of the content conformity restriction is also mentioned in [13].

3.3 Our approach

Since semantic annotations are created and published by different data providers
or agencies in varying quantity and quality and using different assumptions, the
validity of data should be prioritized to increase the quality of structured data. To
solve the problem of detecting errors caused by inconsistencies between analyzed

11 https://developers.google.com/search/docs/guides/sd-policies
12 https://search.google.com/search-console/about
13 https://support.google.com/webmasters/answer/9044175?hl=en&visit_id=

636862521420978682-2839371720&rd=1#spammy-structured-markup

287

Verification and Validation of Semantic Annotations 7

schema.org annotations and the content of the web pages where the annotations
were found, we propose a validation framework. The framework consists of the
following objectives:

1. Detect the main inconsistencies between the content of schema.org annota-
tions and the content of their corresponding web pages.

2. Develop an algorithm for the consistency check between a web page and
corresponding semantic annotations. The information from web pages can be
extracted from the source of a web page by tracking the appropriate HTML
tags, keywords, lists, images, URLs, paragraph tags and the associated full
text. Some natural language processing and machine learning techniques can
be applied to extract important information from the textual description, e.g
price, email, telephone number and so on. There exist some approaches, such
as named entity recognition [16] to locate and categorize important nouns
and proper nouns in a text, web information extraction systems [6], text
mining techniques [2].

3. Define metrics to evaluate the consistencies of the semantic annotations ac-
cording to the annotated content. In this step, we analyze existing data qual-
ity metrics that can be applied on the structured data and define metrics
that can be useful to evaluate the consistency between a web page content
and semantic annotation. We measure the consistency for different types of
values, such as URL, string, boolean, enumeration, rating value, date and
time formats.

4. Provide a validation tool to present the overall score for a web page and
detailed insights about the evaluated consistency scores on a per value level.

3.4 Evaluation

To ensure the validity of the report results, we will organize a user study of
semantic annotations and annotated web pages to prove the performance of our
framework. The questionnaire will be structured in a way to get quantitative
and qualitative feedback about the consistencies between a web page and anno-
tation content (see Fig. 4) according to the results provided by the framework
(see Fig.3). As our use case, we will use annotated data and websites of Destina-
tion Management Organizations, such as Best of Zillertal Fügen14, Mayrhofen15,
Seefeld16, and Zillertal Arena17.

4 Conclusion and Future Work

Semantic annotations will be used for improved search results by search engines
or as building blocks of knowledge graphs. Therefore, the quality issues in terms

14 https://www.best-of-zillertal.at
15 https://www.mayrhofen.at
16 https://www.seefeld.com/
17 https://www.zillertalarena.com

288

8 O. Panasiuk, O. Holzknecht, U. Şimşek, E. Kärle and D. Fensel

Fig. 4. Web page content and annotation content

of structure and consistency can have an impact on where the annotations are
utilized and lead, for instance, to false representation in the search results or
to low-quality knowledge graphs. In this paper, we described our ongoing work
for an approach to verify and validate semantic annotations and the tool that is
evolving as the implementation of this approach.

For the future work, we will define Domain Specifications with SHACL in
order to comply with the recent W3C Recommendation for RDF validation. We
will develop an abstract syntax and formal semantics for Domain Specifications
and map it to SHACL notions, for instance by aligning the concept of Domain
Specifications with SHACL node shapes.

References

1. Akbar, Z., Kärle, E., Panasiuk, O., Şimşek, U., Toma, I., Fensel, D.: Complete
semantics to empower touristic service providers. In: OTM Confederated Interna-
tional Conferences” On the Move to Meaningful Internet Systems”. pp. 353–370.
Springer (2017)

2. Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E.D., Gutierrez, J.B.,
Kochut, K.: A brief survey of text mining: Classification, clustering and extraction
techniques. arXiv preprint arXiv:1707.02919 (2017)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific american
284(5), 34–43 (2001)

4. Boneva, I., Gayo, J.E.L., Hym, S., Prudhommeau, E.G., Solbrig, H.R., Staworko,
S.: Validating rdf with shape expressions. CoRR, abs/1404.1270 (2014)

5. Boneva, I., Gayo, J.E.L., Prudhommeaux, E.G.: Semantics and validation of shapes
schemas for rdf. In: International Semantic Web Conference. pp. 104–120. Springer
(2017)

6. Chang, C.H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE transactions on knowledge and data engineering 18(10),
1411–1428 (2006)

289

Verification and Validation of Semantic Annotations 9

7. Fürber, C., Hepp, M.: Using sparql and spin for data quality management on the
semantic web. In: International Conference on Business Information Systems. pp.
35–46. Springer (2010)

8. Guha, R.: Introducing schema. org: Search engines come together for a richer web.
Google Official Blog (2011)

9. Guha, R.V., Brickley, D., Macbeth, S.: Schema. org: Evolution of structured data
on the web. Communications of the ACM 59(2), 44–51 (2016)

10. Hollenstein, N., Schneider, N., Webber, B.L.: Inconsistency detection in semantic
annotation. In: LREC (2016)

11. Holzknecht, O.: Enabling Domain-Specific Validation of Schema.org Annotations.
Master’s thesis, Innsbruck University, Innrain 52, 6020 Innsbruck, Austria (Nov
2018)

12. Kärle, E., Fensel, A., Toma, I., Fensel, D.: Why are there more hotels in tyrol than
in austria? analyzing schema. org usage in the hotel domain. In: Information and
Communication Technologies in Tourism 2016, pp. 99–112. Springer (2016)

13. Kärle, E., Fensel, D.: Heuristics for publishing dynamic content as structured data
with schema. org. arXiv preprint arXiv:1808.06012 (2018)

14. Meusel, R., Petrovski, P., Bizer, C.: The webdatacommons microdata, rdfa and
microformat dataset series. In: International Semantic Web Conference. pp. 277–
292. Springer (2014)

15. Mika, P.: On schema. org and why it matters for the web. IEEE Internet Computing
19(4), 52–55 (2015)

16. Mohit, B.: Named entity recognition. In: Natural language processing of semitic
languages, pp. 221–245. Springer (2014)

17. Mühleisen, H., Bizer, C.: Web data commons-extracting structured data from two
large web corpora. LDOW 937, 133–145 (2012)

18. Panasiuk, O., Kärle, E., Şimşek, U., Fensel, D.: Defining tourism domains for se-
mantic annotation of web content. e-Review of Tourism Research 9 (Jan 2018),
research notes from the ENTER 2018 Conference on ICT in Tourism

19. Panasiuk, O., Akbar, Z., Gerrier, T., Fensel, D.: Representing geodata for tourism
with schema.org. In: Proceedings of the 4th International Conference on Geograph-
ical Information Systems Theory, Applications and Management - Volume 1: GIS-
TAM,. pp. 239–246. INSTICC, SciTePress (2018)

20. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an rdf val-
idation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems. pp. 32–40. ACM (2014)

21. Şimşek, U., Kärle, E., Holzknecht, O., Fensel, D.: Domain specific semantic valida-
tion of schema. org annotations. In: International Andrei Ershov Memorial Con-
ference on Perspectives of System Informatics. pp. 417–429. Springer (2017)

290

Improvement of Firebrand Tracking and Detection
Software

Prohanov S.1[0000-0002-4478-2249], Kasymov D.1,*[0000-0003-3449-788X] , Zakharov O.1, Agafon-
tsev M.1[0000-0003-1383-7291], Perminov V.1[0000-0001-5393-1851], Martynov P.1[0000-0001-9489-1390],

Reyno V.2, Filkov A.3[0000-0001-5927-9083]

1 Tomsk State University, Tomsk, Russia
2 V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of

Science, Tomsk, Russia
3 The University of Melbourne, Creswick, Australia

denkasymov@gmail.com

Abstract. Burning and glowing firebrands generated by wildland and urban
fires may lead to the initiation of spot fires and the ignition of structures. One of
the ways to obtain this information is to process thermal video files. Earlier, a
number of algorithms were developed for the analysis of the characteristics of
firebrands under field conditions. However, they had certain disadvantages. In
this regard, this work is devoted to the development of new algorithms and their
testing.

For this purpose, semi-field experiments were conducted using an apparatus
for generating firebrands to obtain the necessary thermal video files. The ther-
mograms were processed to create an annotated IR video base that was further
used to test the detector and the tracker.

To detect firebrands in the thermograms, the Laplacian of Gaussian and Dif-
ference of Gaussians (DoG) algorithms were tested. To estimate the accuracy of
detectors, an original approach involving the application of the F1 score was
used. The analysis showed that both algorithms can provide the necessary accu-
racy for the detection of firebrands and are comparable in time and accuracy,
but the DoG algorithm is easier controlled and implemented.

Different firebrand tracking algorithms have been developed and tested. In
particular, a Hungarian algorithm-based tracker that can track firebrands be-
tween frames with high accuracy is implemented. The comparison of the algo-
rithms showed that Hungarian algorithm-based trackers more accurately tracked
the movement of particles.

Keywords: Algorithm, Detection, Firebrands, Tracking.

1 Introduction

In recent years, the number of wildland urban interface fires (WUI fires) has in-
creased. The ignition of buildings in WUI areas is a serious international problem due
to large fires in Australia, Greece, Portugal, Spain and the USA [1-4]. The main fac-
tors affecting the ignition of building materials and the spread of such fires are radia-

291

2

tion and convective heat transfer, as well as firebrands that can accumulate on the roof
and in the corners of buildings, on fences or find another way to penetrate into build-
ings and cause a fire [5-11].

In addition, burning and glowing firebrands produced in the fire front can be trans-
ported by wind and cause spot fires. WUI fires are expected to be a serious problem
not only for the USA, Europe and Australia, but also for Russia.

At present there is a need in a quantitative understanding of the short distance spot-
ting dynamics, namely the firebrand distribution within a distance from the fire front
and how fires coalesce. The absence of such data is an obstacle to the development of
fire hazard forecasting methods, as well as to the improvement of measures and rec-
ommendations for more efficient and effective work to prevent fires, control and ex-
tinguish ground forest fires in proximity to residential buildings.

To address this, a first version of custom software was developed in order to detect
the location and the number of flying firebrands in a thermal image and then deter-
mine the temperature and sizes of each firebrand [12]. The software consists of two
modules, the detector and the tracker. The detector determines the location of fire-
brands in the frame, and the tracker compares a firebrand in different frames and de-
termines the identification number of each firebrand. However, used algorithms had
certain disadvantages. In this regard, this work is devoted to the development of new
algorithms and their testing using experimental data.

The non-contact IR diagnostic method based on modern high-speed IR cameras
with high spatial resolution can estimate the temperature and size of particles, as well
as the speed and trajectory of their movement. These data and the setup simulating the
transfer of burning and glowing firebrands depending on the speed of air and their
number [13-15] allow the software to be adjusted and verified.

2 Methods

2.1 Creation of an annotated video database

In 2015, a unique setup was designed and built to produce burning and glowing fire-
brands of various types, sizes, speeds and shapes [13, 16] (see Fig. 1).

292

3

Fig. 1. Setup for producing burning and glowing firebrands.

This setup designed by the authors has a number of distinctive features. A screw con-
veyer with an air smoke screen was mounted in the setup for a long continuous supply
of fuels. The setup consists of three units, and its characteristics can be easily changed
for different tasks [16]. The setup generating burning and glowing firebrands includes
a unit for measuring temperatures and heat fluxes, a video camera and high-speed IR
cameras (JADE J530SB and FLIR X6530sc) used as recording equipment for tracking
of firebrands (see Fig. 2).

Fig. 2. Experimental setup: 1 is the data recording system, 2 is the producer of burning and
glowing firebrands, 3 is the IR cameras, 4 is the test site.

The important characteristics of firebrands produced by wildland fires are the temper-
ature, the distance of transport, and the flight of trajectory. IR cameras in combination
with the firebrand producing setup successfully determine the desired characteristics.

293

4

A thermal imaging camera (JADE J530SB) containing a narrow-band optical filter
with a 2.5 - 2.7 μm spectral interval and measuring the temperature in the range of
310 - 1500 C was used to determine the temperature of firebrands generated by the
setup.

The thermal imaging camera had a matrix with a resolution of 320x240 pixels. A
lens with a focal length of 50 mm was used for recording; the recording rate was 50
Hz. The optical filter and the lens had the factory calibration. The distance from the
output of the particle generator to the thermal imaging camera was 8.7 m. The FLIR
X6530sc thermal imaging camera with a spectral interval of 1.5 - 5.1 μm was used to
determine the geometrical parameters of flying firebrands. The thermal imaging cam-
era had a matrix with a resolution of 640x512 pixels. A lens with a focal length of 25
mm was used for recording; the recording rate was 50 Hz. The distance from the
thermal imaging camera to the central plane of the output of the setup was 2.2 m, and
the distance between the thermal imaging cameras was 0.4 m. The measured area was
1.7x1.35 m for the FLIR X6530sc and 0.42x0.32 m for the JADE J530SB.

Natural particles (pine bark and twigs) and wood pellets were used as firebrands.
The size of the particles was selected in accordance with the data of field experiments
which showed that particles of similar sizes prevailed during a surface fire in a pine
forest [17–19]. Natural particles were made of pine bark (Pinus sibirica) and were
10×10, 15×15, 20×20, 25×25, 30×30 mm2 in size and 5 mm in thickness. Pine twigs
with a diameter of 2–4, 4–6, 6–8 and a length of 10, 20, 40 and 60 mm were also
used. The diameter of wood pellets was 8 mm, the length of granules was varied from
30 to 50 mm. Each experiment had at least 3 repetitions.

2.2 Development of GUI

A graphical user interface (GUI) was developed to work with a software for detecting,
tracking, and determining the characteristics of burning and glowing firebrands in a
video using thermal imaging cameras.

To develop the GUI, available libraries of graphic elements that support working
with the used software language python3 were considered and compared. In particu-
lar, the libraries Tkinter [20], pyGTK / PyGObject [21], wxPython [22], and pyQt5
[23] were considered.

Tkinter is a cross-platform library for developing a graphical interface, stands for
the Tk interface and is an interface to Tcl/tk [24], is included in the Python language
and does not require additional software installation. However, this library has a rela-
tively small set of built-in widgets and rather poor integration with the desktop envi-
ronment. The PyGTK/PyGObject library is used to develop cross-platform applica-
tions for GNU/Linux and Windows operating systems and write a quite compact
code, but it requires additional software installation and the interface of the applica-
tion under Windows OS is quite non-native. The wxPython library is the wrapper of
the wxWidgets library [25]. It also can be used to develop cross-platform applica-
tions, but this library is quite complicated and has incomplete documentation. The
choice was made in favor of the PyQt5 library, since it can work with the Qt cross-

294

5

platform framework [26] which allows applications to be run under various operating
systems (Windows, MacOS X, Linux).

To render the video frames, a free graphic component library Qwt [27] that works
in conjunction with a library Qt was used. This library provides animation and scaling
of data.

The graphical interface is used to open and visualize videos in the ASCII frame
format.

Example of the used data format (ASCII):

General information :
File G:\DRAGON_11_05_2018\Capture004_comp.ptw
Date Sunday, March 05, 2018
Total frames 2789
Format 320 240
Radiometric data :
Calibration file G:\DRAGON_11_05_2018\Capture004_comp.exp
Unit °C
Emissivity 0.95
BackGround temperature 22.00 °C
Transmission 100.00 %
Distance 2200.00 mm
Atmosphere temperature 26.00 °C
Housing temperature 22.70 °C
Pixel size 25.00 μm
Pixel pitch 30.00 μm
Focal length 50.00 mm
Aperture 2.00 F/#
Cut on 3.70 μm
Cut off 4.80 μm

Image Data :
Frame 0
Time 02:53:41,417
280.01 280.93 280.62 280.97 280.49 280.71 280.32
 281.01 280.49 …
…
282.10 282.32 282.40 282.36 282.32 282.71 282.32
 282.58 282.58 …

Image Data :
Frame 1
Time 02:53:41,437
…

295

6

2.3 Detector testing

To detect burning and glowing firebrands on the frame, various Gaussian convolution
algorithms were tested. The algorithms are aimed at identifying pronounced areas.
The Laplacian of Gaussian (LoG) and Difference of Gaussian (DoG) algorithms were
tested.

The Gaussian of Laplacian algorithm (LoG) is based on the convolution (filtering)
of an image using the Laplace operator:

 (1)

where is the Gaussian kernel, is the Gaussian parameter, are spatial coor-
dinates.

The Laplacian of Gaussian can be given by the formula

 (2)

where is the Laplacian operator.
The Difference of Gaussian (DoG) algorithm is based on the two convolutions of

the image with a Gaussian with a different parameter of σ.

 (3)

 (4)

where and are the Gaussian kernels.
The second step of the algorithm is pixel-by-pixel subtraction of the Gaussian im-

ages from each other.

 (5)

where is the Difference of Gaussian operator.
To evaluate the accuracy of the detectors, the F1 score was used [28]:

 , (6)

where TP is the number of true positives, FP is the number of false positives and FN
is the number of false negatives.

This metric takes into account two types of false positives: (i) when a background
element is falsely detected (false operation), (ii) when a visible particle is not detect-
ed.

296

7

2.4 Tracker Testing

After detecting all particles in the frame, it is necessary to determine whether it is a
new particle or it is in the previous frame and assign it a unique identification number
as well. For this purpose, special particle trackers were developed.

In the previous version of the software, the tracker was based on the nearest neigh-
bor search method (NSS) [29]. Each detection in the current frame, according to the
selected metric, was compared to the detection in the next frame, all other detections
were ignored. The advantages of this tracker are simple implementation, high opera-
tion speed, low memory consumption. However, the method has significant disad-
vantages, such as a high error, a strong dependence on the choice of the metric and, as
a consequence, a low accuracy of operation.

Therefore, additional trackers were tested. A tracker based on the Hungarian algo-
rithm [30] (Kuhn-Munkres algorithm) can track the movement of detection between
frames with a high accuracy. The algorithm is applied to all pairs of frames; all detec-
tions in the first frame are compared to all detections in the next frame (except the
absence of corresponding detection). The main stage of the algorithm is the construc-
tion of a cost matrix that, according to the algorithm, can find the optimal match be-
tween the considered detections. Unlike the nearest neighbor search algorithm, this
algorithm compares all detections of particles between adjacent frames with each
other and determines the optimal match, rather than compares the detections individu-
ally. This allows the algorithm to work with a higher accuracy. The distance between
particles, the size and temperature of the particle were used as a metric for comparing
particles in frames.

The Multiple Object Tracking Precision (MOTP) and Multiple Object Target Ac-
curacy (MOTA) metrics [31] were used to evaluate the quality of the trackers.

The MOTP metric is calculated by the formula (7) and used to evaluate the posi-
tioning accuracy of the tracked particles.

 , (7)

where is the distance between the ground truth, i.e. annotated particles and the
particles predicted by the code with number i in the frame; is the number of match-
es found in the frame with number t. This metric strongly depends on the accuracy of
the detector.

The MOTA metric is based on the frequency of false positives, the frequency of
missed detections and the frequency of errors in assigning a detection number.

 (8)

where is the number of missed detections, is the number of false positives,
 is the number of mismatches; is the number of objects in the frame t. The

index t is responsible for the time or number of the frame.

297

8

3 Results and discussion

3.1 GUI

The developed graphic interface (see Fig. 3) is used to navigate through video frames
(forward, backward, choice of the frame with a required number), enlarge the window
with frames by a given or arbitrary number of times using the mouse, as well as to
select and adjust the parameters of the particle tracking algorithm, run the selected
tracker with the given parameters, and generate the video in AVI format using the
tracker.

Fig. 3. Graphical user interface.

3.2 Video annotation software

To check the quality of the developed detectors and trackers, there is a need in refer-
ence information on the location and trajectory of the flying firebrands. Such infor-
mation is usually supplied to the input as a special file, in which all detections and
tracks of particles are marked and numbered for all frames of the video. Data are usu-
ally marked manually. This process is rather long and time-consuming, since a large
number of frames have to be marked to test the algorithms. The specialized software
accelerates this process by providing the user with quite convenient and effective
means for marking data.

For this purpose, an annotation video software was developed and integrated into
the main graphical software interface (see Fig. 4). It is used to mark frames in both
manual and semi-automatic mode.

298

9

Fig. 4. Frame marked using the annotation video software.

Manual marking is carried out drawing a bounding box around the detection using a
mouse. This rectangle has to be assigned a particle number (track number). Rectan-
gles can be moved, copied, deleted and resized.

To assist in annotating video, checkboxes “Copy previous area” and “Fast areas id”
are provided in the graphical interface. The first checkbox copies all bounding boxes
in the previous frame when moving to the new frame, and the second checkbox auto-
matically numbers the new detections (each new detection will be assigned a number
that is larger than the previous number by one).

The interface also includes the “Add LoG” and “Add DoG” buttons which auto-
matically run available particle tracking algorithms (LoG or DoG) in the current
frame. If necessary, the operation of automatic detectors can be corrected manually,
for example, deleting or adding a new detection, and correcting the number of the
particle track. A video can be automatically marked using built-in detectors and track-
ers.

For quick access to the track by number, there is the “Areas” menu that is used to
get or change the coordinates of the bounding box by number. Also, this menu deletes
the false detection by its number.

To save and load marked data, a file in the json-format is used [32], in which the
frame number, the center coordinates, and the length and width of all bounding boxes
marked in it are stored. All detections have unique numbers corresponding to the
track number.

Example of the video annotation file:

{
 "annotations": [
 {

299

10

 "frame_id": 1,
 "data": [
 {
 "id": "1",
 "bbox": [
 57,
 239,
 22,
 20
]
 },
 ...

The Python3 software language was used to develop the software. To create an appli-
cation, the PyInstaller program [33] was used, which bundles the Python application
and all the necessary dependencies into a single package. Thus, a user can run the
software without installing any additional modules in the system.

3.3 Annotated video database

A series of semi-field experiments on thermal mapping of the generation and
transport of burning and glowing firebrands were conducted using high-speed infrared
cameras. 15 videos of the generation and transport of particles were recorded. Each
video is a set of thermograms/frames (see Fig. 5). The time of each experiment ranged
from 40 to 80 seconds.

a b

Fig. 5. Example of recorded thermograms/frames (infrared): (a) pine twigs; (b) pellets.

Table with the characteristics of recorded videos is given below.

300

11

Table 1. Video database.
File # Weight of

particles, g
Number
of par-
ticles,
pcs

Fuel type JADE J530SB FLIR X6530sc
Num-
ber of
frames

Time of
record-
ing, s

Number
of
frames

Time of
recordin
g, s

1 --- --- bark/twigs 3125 62 --- ---
2 --- --- twigs 3048 61 --- ---
3 --- --- twigs 3356 67 --- ---
4 --- --- twigs 2789 56 --- ---
5 --- --- twigs 2220 44 --- ---
6 --- --- twigs 3728 78 --- ---
7 --- --- twigs 3978 80 --- ---
8 --- --- twigs 3652 7 --- ---
9 100 27 pellets 2817 56 2346 48
10 150 127 pellets 2220 44 2346 51
11 150 147 pellets 2789 55 2346 53
12 300 274 pellets 3356 67 2346 61
13 300 266 pellets 3048 60 2346 53
14 300 270 pellets 3411 68 2346 65
15 --- --- twigs 3125 62 2346 57

--- No data available
The video of two experiments was annotated using the developed annotation soft-

ware. In the future, it is planned to expand the base of annotated videos for verifica-
tion of the software.

3.4 Detector testing results

The average value of the F1 score (formula 6) in the studied videos was 83% for the
DoG algorithm and 73% for the LoG algorithm. The analysis showed that both algo-
rithms can provide the necessary accuracy for the detection of firebrands and are
comparable in time and accuracy, but the DoG algorithm is easier controlled and im-
plemented.

In the future work, it is planned to more precisely select the main parameters of the
LoG and DoG algorithms, namely the variation range of the Gaussian parameter
and the threshold value of the local brightness maxima in the image.

3.5 Tracker testing results

The results of testing the quality of trackers are given in Table 2. The average values
of all tested videos are indicated as the MOTA and MOTP metrics.

Table 2. Evaluating the quality of tracking algorithms.

Algorithm of
tracker and detec-
tor

MOTP, % MOTA,%

Based on the near- 42% 31%

301

12

est neighbor, LoG
Based on the near-
est neighbor, DoG

48% 51%

Based on the Hun-
garian algorithm,
LoG

41% 49%

Based on the Hun-
garian algorithm,
DoG

49% 62%

The accuracy of metrics ranges from 0 to 100%, where 100% is absolute coincidence.

The analysis showed the superiority of Hungarian algorithm-based trackers. The
MOTA and MOTP metrics have a close or higher accuracy for the Hungarian algo-
rithm. At present, the best result is demonstrated by the method based on the DoG
tracking algorithm and the Hungarian algorithm (49% and 62%, respectively). The
obtained accuracy is in good agreement with the results of other works. For example,
multi object tracking studies [34, 35] show comparable accuracy of work using the
applied tracker algorithms.

In the future, it is planned to use a Hungarian algorithm-based tracker to improve
the accuracy of its work due to additional selecting the parameters of used metrics and
improving the quality of detectors. The accuracy of the detectors used is a comparable
value.

4 Conclusion

A series of semi-field experiments was conducted on a unique experimental setup that
simulated the transfer of burning and glowing firebrands of pine bark and twigs, as
well as wood pellets, depending on the number of particles and different recording
parameters using high-resolution infrared cameras. A set of videos was obtained,
which was later used for testing and verification of the software developed.

To detect firebrands in the thermograms, the Laplacian of Gaussian (LoG) and the
Difference of Gaussian (DoG) algorithms were tested. To evaluate the accuracy of the
detectors, an original approach applying the F1 score metric was used. The analysis
showed that both metrics can provide the necessary accuracy for the detection of fire-
brands and are comparable in time and accuracy, but the DoG algorithm is easier
controlled and implemented.

Different firebrand tracking algorithms have been developed and tested. In particu-
lar, a Hungarian algorithm-based tracker (Kuhn-Munkres algorithm) that tracks the
movement of detection between frames with a higher accuracy was implemented. The
analysis showed that the Hungarian algorithm-based trackers tracked more precisely
the movement of firebrands.

A graphical user interface (GUI) was developed for working with the software and
creating an annotated video database. The GUI can be used to perform various ma-

302

13

nipulations with frames, run a selected detector and a tracker with the specified pa-
rameters, as well as to receive the results in the video file.

The further work will be aimed at expanding the database of annotated videos and
improving the accuracy of the selected detector and tracker algorithms.

5 Acknowledgements

This work was supported by the Russian Foundation for Basic Research (project #18-
07-00548), the Tomsk State University Academic D.I. Mendeleev Fund Program, the
Fundamental Research Program of State Academies of Sciences for 2013–2020 (pro-
ject II.10.3.8) and the Bushfire and Natural Hazard Cooperative Research Centre.

References

1. Mell, W.E., Manzello, S.L., Maranghides, A., Butry, D., Rehm, R.G.: The wildland–urban
interface fire problem – current approaches and research needs. International Journal of
Wildland Fire 19, 238–251 (2010). doi: 10.1071/WF07131.

2. Cohen, J.D.: What is the Wildland Fire Threat to Homes? USDA Forest Service Gen.
Tech. Rep. PSW-GTR-173. 189–195 (2000).

3. Kornakova, M.; March, A.: Activities in defendable space areas: Reflections on the Wye
River-Separation Creek fire. Australian Journal of Emergency Management 32, 60–66
(2017).

4. Seymat, T.: Deadly wildfires: a devastating year for Portugal. Euronews. (2017).
5. Foote, E I., Manzello, S.L., Liu, J.: Characterizing firebrand exposure during wildland-

urban interface fires. In: Proceedings of Fire and Materials 2011 Conference, pp. 479–491.
Interscience Communications: San Francisco, CA (2011).

6. Albini, F.A.: Spot fire distance from burning trees- a predictive model. General Technical
Report INT-56, USDA Forest Service, Ogden, Utah. (1979).

7. Tarifa, C.S., del Notario, P.P., Moreno, F.G.: On the flight paths and lifetimes of burning
particles of wood. In: 10th Symposium (International) on Combustion, 1021–1037. The
Combustion Institute (1965).

8. Tse, S.D., Fernandez-Pello, A. and C.: On the flight paths of metal particles and embers
generated by power lines in high winds - a potential source of wildland fires. Fire Safety
Journal 30(4), 333–356 (1998).

9. Albini, F.A.: Transport of Firebrands by Line Thermals. Combust. Sci. Technol. 32(5-6),
277–288 (1983).

10. Manzello, S.L., Park, S., Cleary, T.G.: Investigation on the ability of glowing firebrands
deposited within crevices to ignite common building materials. Fire Safety Journal 44(6),
894–900 (2009). doi:10.1016/j.firesaf.2009.05.001.

11. Suzuki, S., Manzello, S.: Characteristics of Firebrands Collected from Actual Urban Fires.
Fire Technology 54(6), 1533–1546 (2018). https://doi.org/10.1007/s10694-018-0751-x.

12. Filkov, A.; Prohanov, S. Particle Tracking and Detection Software for Firebrands Charac-
terization in Wildland Fires. Fire Technology 1–20 (2018). doi:10.1007/s10694-018-0805-
0.

303

14

13. Kasymov, D.P., Perminov, V.A., Reyno, V.V., Filkov, A.I., Loboda, E.L.: Experimental
setup for producing firebrands to study the spread of wildland fires. Russian Physics Jour-
nal 60(12/2), 107–112 (2017).

14. Loboda, E.L., Kasymov, D.P., Filkov, A.I., Reyno, V.V., Agafontsev, M.V.: Some aspects
of field and laboratory research of wildland fires using thermography. In: 30th Intern. Sci.-
Pract. Conf. M .: VNIIPO, pp. 295–300 (2018).

15. Kasymov, D.P., Agafontsev, A.M., Filkov, A.I., Perminov, V.V., Reyno, V.V.: Experi-
mental data on the transfer of burning and glowing firebrands and the conditions of igni-
tion of fuel bed. In: the 24th Intern. Symposium, pp. 63–66. Atmospheric and Oceanic Op-
tics. Atmospheric Physics: Proceedings, Tomsk, (2018).

16. Kasymov, D.P., Perminov, V.V., Filkov, A.I., Agafontsev, A.M., Reyno, V.V., Gordeev,
E.V.: Generator of burning and glowing firebrands. Patent RF, No. 183063. 2018.

17. El Houssami, M., Mueller, E., Filkov, A. et al.: Experimental procedures characteris-ing
rebrand generation in wildland res. Fire Technology 52, 731–751 (2016).
https://doi.org/ 10.1007/s10694-015-0492-z

18. Filkov, A.I., Prohanov, S.A., Mueller, E., Kasymov, D.P. et al.: Investigation of firebrand
production during prescribed fires conducted in a pine forest. Proceedings of the Combus-
tion Institute 36(2), 3263–3270. (2017).

19. Thomas, J.C., Mueller, E.V., Santamaria, S. et al.: Investigation of rebrand generation
from an experimental re: development of a reliable data collection methodology. Fire
Safety Journal 91, 864–871 (2017). https://doi.org/10.1016/j.resaf.2017.04.002.

20. Tkinter -Python interface to Tcl/Tk. https://docs.python.org/3/library/tkinter.html, last ac-
cessed 2018/12/21.

21. PyGObject. https://pygobject.readthedocs.io, last accessed 2018/12/22.
22. The GUI toolkit for Python. https://wxpython.org/, last accessed 2018/12/22.
23. Python software foundation. https://pypi.org/project/PyQt5/, last accessed 2018/12/23.
24. Tcl Developer Xchange. https://www.tcl.tk/, last accessed 2018/12/23.
25. wxWidgets Cross-Platform GUI Labrary. https://www.wxwidgets.org/, last accessed

2018/01/12.
26. The Qt Company. https://www.qt.io, last accessed 2018/01/12.
27. Qwt User's Guide 6.1.4. https://qwt.sourceforge.io/, last accessed 2018/01/15.
28. Sasaki, Y.: The truth of the F-measure. Teach Tutor mater 1(5), 1–5 (2007).
29. Knuth, D.: The Art of Computer Programming. Fundamental Algorithms 1(2), (1973).
30. Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal of the

Society for Industrial and Applied Mathematics 5(1), 32–38 (1957).
31. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: The

CLEAR MOT metrics. Eurasip Journal on Image and Video Processing (2008).
doi:10.1155/2008/246309.

32. Introducing JSON. https://json.org/, last accessed 2018/01/20.
33. PyInstaller freezes (packages) Python applications into stand-alone executables, under

Windows, GNU/Linux, Mac OS X, FreeBSD, Solaris and AIX. http://www.pyinstaller.org,
last accessed 2018/01/20.

34. Rahul, M.V., Ambareesh, R., Shobha, G.: Siamese network for underwater multiple object
tracking. In: the ACM International Conference, pp. 511–516 (2017).

35. Hua, W., Mu, D., Zheng, Z., Guo, D.: Online multi-person tracking assist by high-
performance detection. Journal of Supercomputing, 1–19 (2017).

304

An editor for teaching the proof of statements for
sets

Vadim Rublev1 and Vladislav Bondarenko2

1 Department of Theoretical Computer Science, Demidov Yaroslavl State University,
Yaroslavl, 150000, Russia,

roublev@mail.ru,
ORCID 0000-0002-0252- 9958

2 Department of Theoretical Computer Science, Demidov Yaroslavl State University,
Yaroslavl, 150000, Russia,
bondarencko40@gmail.com

Abstract. The construction of an editor for teaching the proof of state-
ments for sets, which should become the main part of the computer
teaching system for proving statements for sets, is considered. The prob-
lems of the editor organization, allowing a step by step proof and control
of each step correctness, are solved.

Keywords: computer training, proving statements for sets, editor for
teaching the proof, step by step proof, control of step correctness

1 Introduction

At present, the problems of teaching the bulk of students in mathematical and
computer Sciences are associated with underdevelopment of thinking caused by
the low quality of school education. A significant mass of school graduates do
not know how to read (understand what they read), do not know how to reason,
because they were not taught enough. These problems can be solved only by
individual training, but this approach requires a huge additional time from the
teacher, exceeding several times the hours allocated by the curriculum. There-
fore, it suggests a solution in the development of computer automated learning
systems (ALS), with which you can not only control the knowledge, but to con-
duct training. Basically, many computer systems control the testing of student
memory, and therefore can teach some definitions, but not their use. ASL for
the exact Sciences should teach data analysis, formalization, analysis, reasoning
and transformation. The use of computer algebra [1] underlies the construction
of such systems. For example, one of the authors of this paper used this to
construct ASL of computational complexity of algorithms[2].

In this paper, models of computer-based learning to prove statements for sets
are considered. These models can be divided into 2 groups: proof-of-statement
models for sets and training models that prepare a student for the first group
models. The models of the first group are described in the proof of statements
editor for sets and the study of models of the second group related to the training
of using models of the first group is supposed to be.

305

2 Vadim Rublev, Vladislav Bondarenko

2 The problem of constructing a proof editor of
statements for sets

To solve the problem specified in the headline, select the following task sequence:

1. Limitations on the type of statements for sets for whose prove you need to
build an editor.

2. Equivalent transformation of the sets included in the statement.
3. Splitting the basic statement into an equivalent set of simple statements.
4. The choice of the method of proving a simple statement and the selection of

an initial set of premises in it.
5. Definition of the elementary step of the proof.
6. Control of the correctness proof by the editor.

2.1 Statement type constraints for sets

In the general case of the statement we will consider some universal set U and
its subsets X1, X2, . . . , Xn. The statement uses formulas for these subsets, con-
structed with operations complement, intersection, union, and brackets, chang-
ing the order of these operations, if necessary.

We restrict ourselves to statements for sets of the following form

< Сonstriction of the set relation > {→ | ↔} < Сonstriction of the set relation >

So in example (1)

X1 ∩X2 ∪X3 = (X2 ∪X3) ∩X1 ↔ X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 (1)

it is argued that the equality of two sets given by expressions takes place if and
only if the intersection of the subsets is empty and the second subset is included
in the union of the other two.

2.2 Equivalent transformation of sets included in the statement

To simplify the process of a proof conducted by a student, it is recommended
to simplify the complex expressions of some sets of statements. In this case, we
mean the representation of a complex expression in the form of a union of sets
(or their intersections) in some cases or as the intersection of sets (and their
unions) in other cases. So in example (1) transformation of the set on the left
side of the set equality (it by A) denote

A ≡ X1 ∩X2 ∪X3 = (X1 ∪X2) ∩X3 = X1 ∩X3 ∪X2 ∪X3 (2)

gives both views (2). The set of the right part of the equation (it by B) denote
is already represented in (1) by an intersection, and the union is obtained by the
following transformation

B ≡ (X2 ∪X3) ∩X1 = X2 ∩X1 ∪X3 ∩X1. (3)

306

An editor for teaching the proof of statements for sets 3

The reason why such representations of the set are important is the possibil-
ities of simplifying the conduct of the proof. The representation of a set as a
union of its subsets allows us to divide the further proof into separate branches,
where the membership of an element to a set becomes easier by dividing it into
cases of belonging to a particular subset, and the proof for each such branch is
simplified and can be conducted separately. The representation in the form of
an intersection simplifies the proof of the conclusion that the element does not
belong to the intersection of sets, because it is sufficient to obtain a result about
its non-belonging to one of the sets belonging to the intersection.

2.3 Splitting the basic statement into an equivalent set of simple
statements

If there is an equivalent operation in the basic statement, the statement can be
replaced by a conjunction of two statements with implications in one direction
and the other. So the statement example (1) can be replaced by the conjunction
of the following statements (with the replacement of the parts of the set equality
by the introduced notations A and B):

A = B → X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 (4)

X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 → A = B (5)

Note that statement (4), having in conclusion the conjunction, can be spitted
into 2 statements. In statement (5), the relation of equality of 2 sets at the end of
the implication can be replaced by the conjunction of 2 inclusion, and therefore
the statement (5) can also be divided into 2. As a result, we obtain the following
partition of the basic statement (1):

A = B → X1 ∩X2 ∩X3 = ∅ (6)

A = B → X2 ⊆ X1 ∪X3 (7)

X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 → A ⊆ B (8)

X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 → B ⊆ A (9)

An example of reducing the proof of the basic statement (1) to the proof of 4
simple statements (6)-(9) shows that this can be done in other cases of the basic
statements.

2.4 The choice of a method of proving a simple statement and the
selection of the initial set of premises in it

In a simple statement, when performing the premises of the left part of the
implication, it is necessary to prove the truth of the right part of the implica-
tion(call it a target statement). There are 2 methods of proof when the target is
the inclusion relation of sets:

307

4 Vadim Rublev, Vladislav Bondarenko

– direct method when we prove for an arbitrary element of the universal set,
that from the belonging of an element to the included set follows its belonging
to the including set (call it a target conclusion), that is, the accuracy of the
inclusion.

– indirect method, when we assume the opposite in the target statement(exists
an element of the universal set that belongs to the included set of the target
relation of the inclusion of sets, but does not belong to the including set) and
by a consistent conclusion come to a contradiction with the conjunction of
premises left part of the implication to this simple statement.

For example, in simple statements (7)-(9) both methods are possible. However,
for statement (7) it is more rational to apply the method (perhaps indirect fewer
steps of proof), and for statements (8)and (9) the direct method is more rational.

If the target statement is the equality of a set to an empty set or to a universal
set, then only the indirect method is rational. In this case, the existence of its
element is opposite for an empty set, and the existence of an element that does
not belong to this set is opposite for the equality of a certain set to a universal
set. For a simple statement (6) you need to use an indirect method and show
the contradiction with the premises of the statement.

The proof of any method begins with sequential steps, each of which is based
on a premise. The initial premise in the direct method of proof is that an ar-
bitrary element of the universal set belongs to the included set of the target
statement. For example, for statement (8), the initial premise
is the expression ∀x : x ∈ A.

The initial premise in the indirect method of proof is the denial of the target
statement, which is expressed by the existence of an element that contradicts
the target statement. For example, for (6), the initial statement premise is the
expression ∃x : x ∈ X1 ∩ X2 ∩ X3, and for (7) – statement ∃x : x ∈ X2, x /∈
X1 ∪X3.

In addition to the initial premise, conclusions can be based on assumptions
statement related to the conditions (left side of the implication).The statement
system prepares them as the initial set of premises, adding to it the initial
premise. Meanwhile

1) to the equality of sets (for example, C = D) there correspond 4 premises
(in the example, x ∈ C → x ∈ D, x ∈ D → x ∈ C, x /∈ C → x /∈ D,
x /∈ D → x /∈ C);

2) to the inclusion case (for example, X2 ⊆ X!∪X3) there correspond 2 premises
(in the example, x ∈ X2 → x ∈ X1 ∪X3 and x /∈ X1 ∪X3 → x /∈ X2);

3) to the equality of a set to the empty set (for example, X1 ∩ X2 ∩ X3 = ∅)
there correspond 1 premise (in the example, x /∈ X1 ∩X2 ∩X3);

4) and the equality of a set to the universal set (for example, X1∪X2∪X3 = U)
also matches 1 premise (in the example, x ∈ X1 ∪X2 ∪X3).

For each elementary conclusion of the proof, if it is true, the system adds the
conclusion as a premise to the set of premises of the proof or branch of the proof
(more on that in the next section).

308

An editor for teaching the proof of statements for sets 5

2.5 Definition of the elementary step of the proof

The proof is conducted with the help of a sequence of steps, at each of which
an elementary conclusion is drawn, based on the indicated premises for conclu-
sion. For educational purposes, we limit ourselves to only elementary conclusions
based on no more than 2 premises. For elementary conclusions, the following
ideas are used:

1. If an element belongs to a certain set (for example, premises x ∈ C), the
conclusion can be its belonging to any set, covering the set of the premises
(in the example, the conclusion x ∈ C ∪D).

2. If an element belongs to two sets (for example, 2 premises x ∈ C and x ∈ D),
the conclusion can be an element belonging to the intersection of these sets
(in the example conclusion x ∈ C ∩D).

3. If an element belongs to a set (for example , x ∈ C ∩D), it belongs to each
part of it (in the example , 2 conclusions x ∈ C and x ∈ D).

4. If an element belongs to a set (for example, the premise x ∈ C), it does not
belong to its complement (in the example the conclusion x /∈ C).

5. If an element does not belong to a set (for example, premise x /∈ C), it
belongs to its complement (in the example, the conclusion x ∈ C)).

6. If an element does not belong to two sets (for example, 2 premises x /∈ C
and x /∈ D), it does not belong to the union of these sets (in the example
the conclusion x /∈ C ∪D).

7. If an element does not belong to a union of sets (for example, the premise
x /∈ C ∪D), it does not belong to any of these union sets (in the example,
the conclusion x /∈ C and the conclusion x /∈ D).

8. If an element belongs to a union of sets (for example, the premise x ∈ C∪D),
it can belong to one of these union sets (in the example, the conclusion x ∈ C
and the conclusion x ∈ D) – this conclusion is called the splitting of the cases.

Note that the splitting into cases can be conducted in different ways. A partition
where the sets of cases do not intersect is called alternative. As an example of the
premise x ∈ C∪D you can write the following division into cases: the conclusion
x ∈ C and the conclusion x ∈ D ∩ C. This is especially important when for one
case, the further conclusion is easily built. Then, for the second case, additional
information is obtained, which can help in the further conclusion. If the first
case is also difficult, it can be divided into 3 cases: the conclusion x ∈ C ∩ D,
the conclusion x ∈ C ∩D and the conclusion x ∈ D ∩ C.

Note also that the division into alternative 2 cases of belonging to a certain
or set non-belonging to this set can always be done without relying on premises
(for example, the conclusion x ∈ C and the conclusion x /∈ C form 2 cases and
do not require a premise).

Each conclusion, if made correctly, is added as a premise to the preceding
set of premises. But when cases appear, each of them is associated with its own
independent branch of proof and many premises of this branch, which is formed
from the previous set of premises by adding a new premise – the case conclusion.

309

6 Vadim Rublev, Vladislav Bondarenko

Each branch of the proof must end with either a white square denoting
the receipt of the target conclusion, or a black square denoting the receipt of
a contradiction. If all branches of the proof from the opposite ended with a
contradiction, the proof of the statement was successful. If in the direct method
the proof of all branches ended, but there are branches that ended in success (a
white square), the proof was successful.

2.6 Editor control of the proof

The system allows the trainee to build a proof of the basic statement. But the
system has to control all his or her actions, starting from splitting into simple
statements, selecting the method of proof with the organization of an initial
premise, performing each elementary step of the proof up to the completion of
each branch of the proof.

To this purpose, the system, at the end of the above actions (by pressing a
button Verify), builds a Boolean function corresponding to a statement for sets
(simple statements into which the basic statement is splitted, or statements of
the original premise, or the statement of an elementary step, as implications of
conjunctions of the premises and conclusion of the elementary step or implication
of the premise and disjunction of the conclusion of cases) and verifies its identity
truth (truth on any argument sets). This Boolean function (let us call it BIF
Boolean Identification Function) is constructed as follows:

1. Each set Xi is replaced by a boolean variable yi, whose value is equal to the
truth of the statement that the element x belongs to this set (yi ≡ (x ∈ Xi)).
Other are replaced in the same way. For example, the set A is replaced by
a boolean variable a, whose name is a lowercase letter, corresponding to the
set name and its true value coincides with the value of the statement of the
belonging of an element x to this set, i.e. a ≡ (x ∈ A).

2. Operations on sets of complement, intersection and union are replaced ac-
cordingly by operations of negation, conjunction and disjunction for the cor-
responding subsets of statements.

3. The equality for sets is replaced by the equivalence operation of the corre-
sponding statements.

4. The inclusion for sets is replaced by the operation of implication of the
corresponding statements.

5. The equality of a set to the empty set is replaced by the negation of the
corresponding statement for the set.

6. The equality of a set to the universal set is replaced by the corresponding
statement for the set.

So in the considered example (2) of identical representations of the set A we
obtain the following BIF fa = (y1 ∧ y2 ∨ y3 ↔ (y1 ∨ y2) ∧ y3) ∧ (y1 ∧ y2 ∨ y3 ↔
(y1 ∧ y3) ∨ (y2 ∧ y3)) and since it is identically true, then by the theorem on
the connection of expressions of the algebra of sets and the algebra of statements
and its consequences (see, for example [5]) the system confirms the correctness
of transformations of the set A.

310

An editor for teaching the proof of statements for sets 7

Next, for a simple statement (6), the BIF will look as follows:

f6 ≡ (y1 ∧ y2 ∨ y3 ↔ (y2 ∨ y3) ∧ y1) → y1 ∧ y2 ∧ y3.

Its identical truth also confirms the correctness of the simple statement (6).
When conducting the proof from the contrary of this statement, the student

receives the initial premise. ∃x : x ∈ X1 ∩ X2 ∩ X3 from the negation of the
proved statement X1 ∩X2 ∩X3 = ∅ and BIF for verification gets the following
expression: fu1 ≡ y1 ∧ y2 ∧ y3 ↔ y1 ∧ y2 ∧ y3, and since it is identically true, the
initial premise is correctly built by the student.

From the received initial premise follows a conjunction of 3 elementary con-
clusions. x ∈ X1 ∧ x ∈ X2 ∧ x ∈ X5, what is verified by the identical truth of
BIF of the function of implication of the function of premise and conjunction of
functions of elementary conclusions y1 ∧ y2 ∧ y3 → y1 ∧ y2 ∧ y3.

3 Editor interface for proving assertions for sets

The editor interface is a constructor. Using a dialog with a choice of actions
(Fig. 1), the trainee chooses which elements he will need for further work. Such
elements will appear in the main program window (Fig. 2). Another single win-
dow is the input toolbar (Fig. 3). The proof process is divided into several stages:

1. Initially, at launch, a dialog is called up with the choice of action (Fig. 1),
where learner selects one of the items he needs for the proof.

2. “Enter the basic statement” creates a field for input.
3. “Inputting identical transformations for some sets” (they are given the names

A and B create two input fields with buttons for checking the transforma-
tions).

4. “Splitting the basic statement” creates a split number, an input field and a
validation button.

5. “The choice of the statement to be proved” creates a dialog window in which
the previously entered splits of the basic statement are displayed.

6. “Entering the initial premise and step of proving” creates verify button and
input field.

After entering the text of the elementary conclusion or the initial premise into
the scheme of the proof, one or several buttons are displayed in the form of a
red square, pressing one of them will form a field for entering the text of the
next elementary conclusion. The choice of an elementary conclusion of a white
or black square, if correct, leads to the completion of the proof of the statement
or its branch.

311

8 Vadim Rublev, Vladislav Bondarenko

Fig. 1: Choose dialog

Fig. 2: A window for entering the required statements and premises of evidence

312

An editor for teaching the proof of statements for sets 9

Fig. 3: Window of tools required for proof

4 Conclusion

All the tasks of developing an editor for proving statements for sets are achieved,
and we hope that this will allow us to complete the development of the ALS,
where this editor will be the central construction teaching this material.

References

1. Davenport J.H., Siret Y., Tournier E.: Computer algebra: systems and algorithms
for algebraic computation / - Academic Press, 1988. ISBN 978-0-12-204230-0

2. Rublev V.S., Yusufov M.T.: Automated system for teaching computational complex-
ity of algoritm cours, Convergent Cognitive Information Technologies (Selected Pa-
pers of the First International Sientific Conference Convergent Cognitive) Moscow,
Russia, November 25-26, 2016 (http://ceur-ws.org/Vol-1763/). (ISSN 1613-0073
VOL-1763 urn.nbn.de: 0074-1763-4)

313

Nobrainer: an Example-driven Framework for
C/C++ Code Transformations

Valeriy Savchenko1, Konstantin Sorokin1, Georgiy Pankratenko1, Sergey
Markov1, Alexander Spiridonov1, Ilia Alexandrov1, and Alexander Volkov2

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russian Federation

{vsavchenko,ksorokin,gpankratenko,markov,aspiridonov,ialexandrov}@ispras.ru
2 Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation
asvolkov@ispras.ru

Abstract. Refactoring is a standard part of any modern development
cycle. It helps to reduce technical debt and keep software projects healthy.
However, in many cases refactoring requires that transformations are
applied globally across multiple files. Applying them manually involves
large amounts of monotonous work. Nevertheless, automatic tools are
severely underused because users find them unreliable, difficult to adopt,
and not customizable enough.
This paper presents a new code transformation framework. It delivers an
intuitive way to specify the expected outcome of a transformation applied
within the whole project. The user provides simple C/C++ code snippets
that serve as examples of what the code should look like before and after
the transformation. Due to the absence of any additional abstractions
(such as domain-specific languages), we believe this approach flattens
the learning curve, making adoption easier.
Besides using the source code of the provided snippets, the framework
also operates at the AST level. This gives it a deeper understanding of the
program, which allows it to validate the correctness of the transformation
and match the exact cases required by the user.

Keywords: code transformation · global refactoring · C/C++.

1 Introduction

The lifecycle of any software project is a constant evolution. Not only does it
mean writing new code while adding new features, but it also includes contin-
uously modifying the existing code. Excessive focus on extending the system’s
functionality can lead to a rapid accumulation of the project’s technical debt. The
concept of technical debt is a widespread metaphor for design-wise imperfection
that boosts initial product development and deployment. With time, however,
the debt grows larger and can potentially stall the whole organization [3].

A common way to mitigate this problem is refactoring [2, 12], which is a
modification of the system’s internal structure that does not change its external

314

V. Savchenko, K. Sorokin, G. Pankratenko et al.

behavior [4]. It helps to eliminate existing architectural flaws and ease further
code maintenance. Murphy-Hill et al. [9] have estimated that 41% of all pro-
gramming activities involve refactoring. The same study also concluded that
developers underuse automatic tools and perform code transformations man-
ually despite the fact that a manual approach is more error-prone. Research
performed on StackOverflow website data [10] found that corresponding tools
can be too difficult and unreliable, as well as require too much human interac-
tion. This reveals a few natural requirements for a beneficial refactoring tool —
it should be easy to use, ask a minimal number of questions from the end user,
and rely on syntactic and semantic information in order to ensure the correctness
of the performed transformations.

Highly customizable refactoring tools typically utilize additional domain-
specific languages (DSL) for describing user-defined transformation rules [5,7,14].
Such languages need to express both the intended refactoring and the differ-
ent syntactical and semantical structures of the target programming language.
Adopting a DSL can be too overwhelming in the case of C/C++ languages be-
cause the language itself is already complex. Studies show that C and C++ take
longer to learn [8], and projects in these languages are more error-prone [11]
compared to other popular languages.

This insight further qualifies the ease-of-use requirement: the tool should not
introduce another level of sophistication on top of C/C++ nor expect additional
knowledge from its user.

This study presents the Clang-based transformation framework nobrainer,
which is built on such principles. The expression a no-brainer refers to something
so simple or obvious that you do not need to think much about it.34 This concept
reflects the core idea behind nobrainer, the idea of providing an easy-to-use
framework for implementing and applying a user’s own code transformations.

Individual nobrainer rules are written in C/C++ without any DSLs. Each
rule is a group of examples that represents situations that should be refactored
and illustrates the way they should be refactored. They look exactly like devel-
oper’s code, thus flattening the learning curve of the instrument.

In this paper, we describe the main principles behind nobrainer, illustrate
the most interesting design and implementation solutions, and demonstrate the
tool’s application in real-world scenarios.

2 Related work

This section covers the various approaches on code transformation and automatic
refactoring presented in the literature. We distinguish two key points in the
current review. The first point is the form, in which the transformations are
described. The second point is the way these transformations are performed.
There are a few similar approaches that can be combined and compared.

3https://www.merriam-webster.com/dictionary/no-brainer
4https://dictionary.cambridge.org/dictionary/english/no-brainer

315

Nobrainer: an Example-driven Framework for C/C++ Code Transformations

Most of the tools reviewed here rely on a separate syntax for describing
transformation or refactoring rules. For example, Waddington el al. [5] introduce
their language YATL; whereas, Lahoda et al. [7] extend the Java language to
simplify rule descriptions. We believe that various types of DSLs can confuse the
user and introduce another layer of complexity. Wright and Jasper [14] describe
a different approach. Their tool ClangMR adopts Clang AST matchers [1] as a
mechanism for describing the parts of the user’s code that should be transformed.
The user must define replacements in terms of AST nodes. The authors imply
that the user is familiar with the principles of syntax trees and how it is built
for C/C++ programming languages. We believe that this requirement is rarely
met, and that is why the adoption of ClangMR can be challenging for a regular
user.

Wasserman [13], on the other hand, introduces a tool (Refaster) that does
not involve any DSLs. He suggests using the target project’s programming lan-
guage for describing transformations. This allows the user to embed transforma-
tion rules into the project’s code base, which leads to simpler syntax checks and
symbol availability validations. Transformation rules are written in the form
of classes and methods with either @BeforeTemplate or @AfterTemplate an-
notations. Each class represents a transformation and should contain one or
more @BeforeTemplate methods and a single @AfterTemplate method. Then
the tool treats the transformation as follows: match the code that is written in
@BeforeTemplatemethod and replace it with the code written in @AfterTemplate
method.

We consider Wasserman’s tool design to be clear and user-friendly because
it uses the language of the project’s code base to define transformations. We use
a similar approach in nobrainer.

We decided that the best method for matching the C/C++ source code is
the approach used in ClangMR. However, because using Clang AST matchers
directly can be challenging, we provide a higher level framework that utilizes
AST matchers internally.

Regarding the code transformation, a common solution is to generate an
AST, transform it, and restore the source code in the end. This kind of ap-
proach is used by Proteus [5], Jackpot [7] and Eclipse C++ Tooling Plugin [6].
The main problem of implementing such an approach is code generation. We
should remember all the nuances of the original source code in order to replicate
them when restoring the resulting code. This includes preserving comments, re-
dundant spaces, etc. On the other hand, in ClangMR [14], the authors suggest
using the Clang5 framework for code transformation because it allows developers
to directly modify the source code token wise. We also use the Clang framework
because we believe it is the best solution to transform C/C++ source code.

5https://clang.llvm.org/

316

V. Savchenko, K. Sorokin, G. Pankratenko et al.

3 Design

In this section, we describe the overall design and the user’s workflow. Running
the tool on a real project involves the following list of actions:

– writing transformation rules as part of the target project
– providing compilation commands for the target project (the currently sup-

ported format is the Clang compilation database6)

Nobrainer either applies all the replacements or generates a YAML file con-
taining these replacements. In the latter case, replacements can be applied later
with the clang-apply-replacements tool (part of the Clang Extra Tools7).

Fig. 1 provides an insight into the internal nobrainer structure. Each num-
bered block represents a work phase of the tool. Boxes at the bottom correspond
to each phase’s output.

1 2 3

template collection
template validation

rule generation
rule validation
rule processing

rule matching
replacement
generation

templates

source code

compilation
commands

modi ed
source code

replacements
le

AND OR

rules replacements

Fig. 1. Nobrainer workflow

During the first phase, the tool analyzes all of the translation units that are
extracted from the given compilation commands. For each translation unit, it
searches for and collects templates that represent our transformation examples.
Then nobrainer filters invalid templates. The result of the first phase is a list
of valid templates.

In the second phase, we group conforming templates into rules. Nobrainer
also checks each rule for consistency and then processes each rule to generate
internal template representation.

In the third phase, we work with the list of preprocessed rules. Nobrainer
tries to match each rule against the project’s source code. For each match, we
construct a special data structure, which we use to generate a replacement. As
a result, we obtain a set of replacements.

For more details on each phase, see Section 4.

4 Detailed description

The core idea of nobrainer is the use of examples, which are code snippets
written in C/C++ languages. Because each snippet may represent a whole fam-

6https://clang.llvm.org/docs/JSONCompilationDatabase.html
7https://clang.llvm.org/extra/index.html

317

Nobrainer: an Example-driven Framework for C/C++ Code Transformations

ily of cases, we call them templates. The user submits the situations she wants
to change in the Before templates and the substituting code in the After tem-
plates. These templates can be defined anywhere in the project.

Nobrainer offers a special API for writing such examples, which is subdi-
vided into C and C++ APIs. Both provide the ability to write expression and
statement templates to match C/C++ expressions or statements respectively.

For a clearer explanation of what a template is, let us proceed with an exam-
ple. Suppose the user wants to find all calls to function foo with an arbitrary int

expression as the first argument and global variable globalVar as the second
argument and replace the function with bar, while keeping all the same argu-
ments. Listing 1 demonstrates how such a rule can be specified (using nobrainer
C API).

int NOB_BEFORE_EXPR(ruleId)(int a) {

return foo(a, globalVar);

}

int NOB_AFTER_EXPR(ruleId)(int a) {

return bar(a, globalVar);

}

Listing 1: Expression template example

Expressions for matching and substitution reside inside of return state-
ments. We force this limitation intentionally because it allows us to delegate
the type compatibility check of Before and After expressions to the compiler.

Nobrainer’s transformations are based on the concept that two valid ex-
pressions of the same type are syntactically interchangeable. This statement is
correct with the exception of parenthesis placement. In certain contexts, some
expressions must be surrounded with parentheses. However, we introduce a sim-
ple set of rules that solve this issue and are not covered in this paper.

In order to properly define the term template, we first need to introduce the
following notations (with respect to the given program):

– Θ is a finite set of all types defined
– Σ is a finite set of all defined symbols (functions, variables, types)
– A is a finite set of all AST nodes representing the program
– C is a finite set of characters allowed for C/C++ identifiers
– P is a finite set of all function parameters p = �np, tp� where np ∈ C∗ is the

parameter’s name and tp ∈ Θ is its type

An expression template can be formally defined as a 6-tuple

Texpr = �k, n, r, P,B, S� (1)

where

318

V. Savchenko, K. Sorokin, G. Pankratenko et al.

– k ∈ {before, after} is the template’s kind
– n ∈ C∗ is the rule’s identifier, it is used for pairing corresponding before/after

templates
– r ∈ Θ is the return type
– B ⊂ A is the body
– P ⊆ P is the set of parameters
– S ⊆ Σ is the set of symbols used in B

The last two elements of the tuple require additional commentary.
Template parameters P represent generic placeholders for different situations

encountered in the real source code. Nobrainer reads these parameters as ar-
bitrary expressions of the corresponding type. For example, parameter a from
Listing 1 corresponds to any expression of type int.

The set of symbols S is important for the correctness affirmation (see Sec-
tions 4.4 and 4.6).

int NOB_BEFORE_EXPR(ruleId)(int a) {
 return foo(a, globalVar);
}

Fig. 2. Before template deconstruction

Fig. 2 dissects the Before template from Listing 1.
The following subsections cover nobrainer’s phases in more detail.

4.1 Template collection

The first phase is to collect all the templates from the project. Nobrainer scans
each file and tries to find functions that were declared using the API. This can
only be done for parsed source files. Doing so for the whole project can have a
drastic impact on the tool’s performance. In order to avoid checking all the files,
we only process files that contain inclusion directives of nobrainer API header
files.

As the output, this phase has a set of all templates defined by the user. We
denote it as T .

4.2 Template validation

After the template collection phase, we validate each template individually. We
need to check that the collected templates in T are structurally valid. First it is
important to note that the syntactic correctness of a template is guaranteed by
the compilation process. Templates are implemented as the part of the existing
code base, which implies that they are actually parsed and checked during the

319

Nobrainer: an Example-driven Framework for C/C++ Code Transformations

collection phase. This includes checks for the availability of all symbols, type
checks, etc.

In every separate case, nobrainer replaces a single expression with another
single expression. Considering this fact, each template Texpr should define ex-
actly one expression. This requirement is transformed into a syntax form as:
a template’s body B should consist of a single return statement with a non-
empty return expression. During the template validation stage, we check this
constraint. Thus, nobrainer filters out templates without a body (i.e. declara-
tions), templates with an empty body, and templates with a single statement
return;.

Currently there are some limitations regarding the usage of functional style
macros and the usage of C++ lambda expressions in template bodies. For this
reason, we validate the absence of either of these language features.

Thus, if nobrainer encounters invalid templates, it filters them out and
proceeds to the next phase with the set of valid ones T+.

4.3 Rule generation

For an arbitrary id ∈ C∗, we define two sets of templates Bid and Aid as follows:

Bid = {T ∈ T+|nT = id, kT = before} (2)

Aid = {T ∈ T+|nT = id, kT = after} (3)

These two groups describe exactly one user-defined transformation scenario be-
cause they include all of the Before and After examples under the same name.
However, in order for Bid and Aid to form a transformation rule, the following
additional conditions must be met:

⎧⎪⎨
⎪⎩

|Bid| ≥ 1

Aid = {aid} (i.e. |Aid| = 1)

∀b ∈ Bid → aid ≺ b

(4)

where

∀x, y ∈ T+ → x ≺ y ⇔
�
Px ⊆ Py

rx = ry
(5)

We refer to operator ≺ as the compatibility operator. It indicates that the
snippet defined in x can safely replace the code matching y. The equality of
return types r ensures that the substituting expression has the same type as
the original one, while condition Px ⊆ Py guarantees that nobrainer will have
enough expressions to fill all of the x’s placeholders.

As a result, we define transformation rule as a pair Rid = �Bid, Aid� where
Bid and Aid meet conditions (4). Additionally we denote the set of all project
rules as R.

320

V. Savchenko, K. Sorokin, G. Pankratenko et al.

4.4 Rule processing

Before template processing As mentioned before, we convert Before tem-
plates to Clang AST matchers. These provide a convenient way to search for
sub-trees that fit the given conditions. They describe each node, its properties,
and the properties of its children. Thus, this structure resembles the structure of
the AST itself. In order to generate matchers programmatically, we exploit this
fact. Each node of the template’s sub-tree is recursively traversed and paired
with a matcher. As a result, we encapsulate the logic related to different AST
nodes and avoid the necessity of supporting an exponential number of possible
node combinations.

CallExpr "foo"

BinaryOperator "+"

IntegerLiteral "3"

DeclRefExpr "x"

callExpr(callee("foo"),
 hasArgument(*))

binaryOperator(hasOperator("+"),
 hasLHS(*), hasRHS(*))

integerLiteral(hasValue(3))

expr().bind("x")

int before(int x) {
 return foo(3 + x);
}

Fig. 3. Recursive AST matcher generation

Fig. 3 demonstrates a simplified example of such a conversion. It depicts three
stages of Before template processing: source code, AST, and AST matchers.
Bold arrows reflect parent-child relationships, while dashed arrows stand for
node-matcher correspondence. Because matchers are represented by a series of
nested function calls, we construct the innermost matchers first, traversing the
tree in a depth-first fashion.

Matching identical sub-trees Consider the Before template from Listing 2.
It is unlikely that the user expects the system to match two arbitrary expressions
as foo’s arguments. In fact, the most intuitive interpretation of this template is
matching calls to function foo with identical arguments only.

int before(int x) {

return foo(x, x);

}

Listing 2: An example of reusing a template parameter

Clang does not provide a matcher that can do the job. However, nobrainer
already has a mechanism to find identical sub-trees for Before templates without

321

Nobrainer: an Example-driven Framework for C/C++ Code Transformations

parameters. During the matching process, we reuse this mechanism to dynami-
cally generate a matcher. Thus, for the given example, we bind the first argument
to x, generate a matcher, and check if the second argument fits.

After template processing Our goal is to construct a text that represents
the result of a replacement. Therefore, we convert After templates into plain
strings. However, there are some parts of the After template’s body that cannot
be taken as is and placed into the desired location. We call such parts mutable.
During the traversal of the After template’s body, we extract the ranges that
represent mutable parts. Each range consists of the start and the end locations
of the certain AST node. There are two cases of mutable parts.

The first case is the use of a template parameter inside of an After template’s
body. We treat each template parameter as a placeholder that we fill during
replacement generation (see Section 4.6).

The second case is the use of a symbol. Inserting symbols in arbitrary places
in the source code can be syntactically incorrect. Indeed, in the location of
insertion, the symbol may not yet have been declared. Thus, we collect symbol
information that is used during replacement generation (see Section 4.6).

Given these points, for the After template from Listing 3, we construct the
following format string: "#{bar}(${x}) + 42". In this example, nobrainer dis-
tinguishes the symbol bar and the template parameter x, and handles them
accordingly. The tool treats all the remaining parts of the string as immutable,
and, with this in mind, constructs the resulting format string.

int after(int x) {

return bar(x) + 42;

}

Listing 3: An example of an After template

4.5 Rule application

The next step is to identify all situations, in which to apply rules R. In order to
do this across the whole project, nobrainer independently parses all the source
files. After that, the tool applies AST matchers generated for each rule.

Each time a match is found, nobrainer obtains a top-level expression that
should be replaced and a list of AST sub-trees bound to parameters from the
corresponding Before template. Using this information and the After template,
nobrainer generates an actual code change called a replacement.

4.6 Replacement generation

Replacement is a sufficient specification for a complete textual transformation.
It consists of four components:

322

V. Savchenko, K. Sorokin, G. Pankratenko et al.

– the file where current replacement is applied
– the byte offset where the replaced text starts
– the length of the replaced text
– the replacement text

Nobrainer extracts the first three components from the expression marked
for substitution. The replacing text is composed from the After template and
AST nodes bound to parameters. For each node, nobrainer gathers the corre-
sponding source code and fills placeholders from the After template. This opera-
tion results in plain text for the substitution. Fig. 4 demonstrates this procedure
using a real code snippet.

int before(int x, char y) {
 return foo(y, x, y);
}

int after(int x, char y) {
 return bar(y) + x;
}

foo('a', 10 * 42, 'a')

"bar(${y}) + ${x}"

"bar('a') + 10 * 42"

format string

match

result

Fig. 4. Replacement generation

Such a transformation may nevertheless cause compilation errors due to sym-
bol availability. Nobrainer should check that each symbol that comes with a
substitution is declared and has all required name qualifiers. In order to ensure
this, we:

– add inclusion directives for the corresponding header files
– add namespace specifiers

The resulting code incorporates only the pieces of real source code that have
been checked by Clang at different stages of the analysis.

4.7 Type parameters

Parametrization with arbitrary expressions provides a flexible instrument for
generic rule definition. However, this may not be enough. Exact type specifica-
tion can significantly limit the rule’s expressiveness and reduce the number of
potential use cases.

In order to combat this shortcoming, we introduce a set of type parameters
Φ ⊂ C∗ to a template syntax. This extends the template definition (1) to

Texpr = �k, n, r, P,B, S, Φ� (6)

and compatibility operator ≺ (5) to

∀x, y ∈ T+ → x ≺ y ⇔

⎧⎪⎨
⎪⎩

Φx ⊆ Φy

Px ⊆ Py

rx = ry

(7)

323

Nobrainer: an Example-driven Framework for C/C++ Code Transformations

Note that type parameters Φ are fully symmetrical to parameters P .

template <class T> T *before() {

return (T *)malloc(sizeof(T));

}

template <class T> T *after() {

return new T;

}

Listing 4: An example of a type-parametrized rule

Listing 4 demonstrates a rule parametrized with type.

5 Results

In this section, we describe how we test nobrainer, provide some transformation
rule examples and present the performance results.

5.1 Testing

Our tests can be divided into two main groups. First, we have a group of unit- and
integration-tests for each phase described in Section 3. These are mainly used
to check the correctness of AST matcher generation (Section 4.4) and format
string generation (Section 4.4) for various AST nodes.

Second, we have a group of regression tests consisting of several open source
projects.

For each project, we have created files with predefined nobrainer templates.
Our testing framework runs the tool, measures the execution time, checks that
all the predefined transformations have been performed as expected, and verifies
that the project can be compiled afterwards.

5.2 Examples

In this section, we present three notable transformation rules that are supported
by nobrainer.

The first example (Listing 5) shows the transformation rule that changes
the order of arguments inside of the composemethod call. Specifically, nobrainer
will replace each call of the compose method of the Agent class a.compose(x,
y) with the call a.compose(y, x).

Thus, we demonstrate how to perform an argument swap automatically when
method’s signature changes.

324

V. Savchenko, K. Sorokin, G. Pankratenko et al.

int NOB_BEFORE_EXPR(ChangeOrder)(Agent a, char *x, char *y) {

return a.compose(x, y);

}

int NOB_AFTER_EXPR(ChangeOrder)(Agent a, char *x, char *y) {

return a.compose(y, x);

}

Listing 5: An example template for the argument swap

The second example (Listing 6) shows that nobrainer can be used to
perform simplifying code transformations.

class EmptyCheckRefactoring : public nobrainer::ExprTemplate {

public:

bool beforeSize(const std::string x) {

return x.size() == 0;

}

bool beforeLength(const std::string x) {

return x.length() == 0;

}

bool after(const std::string x) {

return x.empty();

}

};

Listing 6: An example template for a string emptiness check

Recall that each rule can have an arbitrary number of before templates,
but only one after template. Writing several before expressions helps to group
common transformations.

The third example contains type and expression parameters. Listing 7
shows the corresponding rule.

325

Nobrainer: an Example-driven Framework for C/C++ Code Transformations

class ConstCastRefactoring : public nobrainer::ExprTemplate {

public:

template <class T>

T *before(const T *x) { return (T *)x; }

template <class T>

T *after(const T *x) { return const_cast<T *>(x); }

};

Listing 7: An example template for const casts

It detects the C-style cast that “drops” the const qualifier from the pointed
type and replaces it with an equivalent C++-style cast. Parameter x should be of
any pointer-to-const type and should be cast to exactly this type, but without a
const qualifier. Nobrainer captures all of these connections and processes them
as expected.

5.3 Performance

To measure the performance we run our regression tests five times on a machine
with Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz CPU, and 64GB of RAM.
The machine runs on Ubuntu 16.04 LTS. We perform the execution in eight
threads.

Table 1 contains the results. For each project, we list its size in lines of code,
the number of replacements nobrainer applies during the test, and our time
measurements. We distinguish two stages of nobrainer’s workflow and measure
them separately. The first stage incorporates the project’s source code parsing.
The second stage contains all the remaining computations up to replacement
generation. We divide the whole process this way because the parsing process is
performed by the Clang framework. For this reason, we can only minimize the
time nobrainer spends in the second stage.

Project KLOC Replacements
Parsing

Remaining

time (s)
operation

time (s)

CMake 493 24 31.36 7.13

curl 129 7 3.17 2.01

json 70 7 13.99 1.34

mysql 1170 10 9.54 3.12

protobuf 264 8 16.62 2.97

v8 3055 6 281.57 28.52

xgboost 43 14 6.75 1.18

Table 1. Performance results

326

V. Savchenko, K. Sorokin, G. Pankratenko et al.

It should be noted that the execution time does not directly correlate with
the project’s size. Other factors, such as translation unit sizes may also influence
the overall performance.

As can be seen in Table 1, the elapsed time varies significantly between
projects. In particular, this behavior applies both to the parsing time and to
remaining processing time. Therefore, comparing the elapsed time of different
projects offers few insights. Thus, in our evaluations, we consider the percentage
of time that the file parsing takes from the whole process. Then, we compare this
proportion among different projects. Fig. 5 demonstrates the corresponding rates
for the regression projects. Our results show that parsing takes up more than
81% of the whole execution time on average. For a global refactoring, all files
must be parsed. The fact that the remaining procedure takes less than 20% of the
execution time means that nobrainer has reached near-optimal performance.

CMake curl json mysql protobuf v8 xgboost

Project

0

25

50

75

100

O
p
er
a
ti
o
n
ti
m
e
p
er
ce
n
ta
g
e

File parsing time

Remaining operation time

Fig. 5. File parsing percentage in nobrainer operation

Nevertheless, in certain cases, it is possible to avoid parsing files when it is
sure that the file contains nothing to transform. The next section explains this
and other directions in our future work.

6 Limitations and future work

Currently nobrainer supports expression templates and type parameterization.
It can be used to perform transformations in continuous integration environ-
ments (CI). However, the execution time is still unsuitable for running it on

327

Nobrainer: an Example-driven Framework for C/C++ Code Transformations

large projects as a background task in IDE. There is still room for improvement.
Thus, we consider three main directions for future work:

1. Full statement support

2. Performance improvements

3. Usability improvements

At the moment, we have already designed infrastructure for statement sup-
port. This includes API, validation and stubs for processing Before and After

templates. We have also added support for if statements, compound statements,
and variable declaration nodes. Our next task is to implement processing for
each remaining statement node.

Regarding performance, we plan to research methods for reducing the pars-
ing time. We are considering two directions. Firstly, we would like to improve
the matching phase by skipping files that do not contain symbols used in Before

templates. Secondly, we will explore automatic precompiled header (PCH) cre-
ation, which is expected to speed up the process of parsing the project’s header
files.

Further, the usability of our tool can be improved in two ways. Currently
nobrainer performs found transformations only for the whole code base. We
would like to add support for executing on user-defined parts of the project.
We are also considering integrating with other developer tools. For example,
nobrainer can be used as an IDE plugin to enhance user experience and the
convenience of usage. Another possible scenario is to use nobrainer to assist
static analyzers for fixing errors or defects.

7 Conclusion

In this paper, we presented nobrainer — a transformation and refactoring
framework for C and C++ languages based on the Clang infrastructure. Its
design is built on two main principles: ease-of-use and the extensive validation
of transformation rules. A substantial part of this article includes describing its
design and implementation, accompanied with examples and results.

Our results showed that nobrainer already supports real-world transfor-
mation examples and can be successfully applied to large C/C++ projects in
continuous integration environments. We also highlighted the current limitations
of the tool and some directions for later improvements. In the future, we plan to
enhance the usability of nobrainer and integrate with other developer tools.

References

1. Clang documentation: Matching the clang ast. https://clang.llvm.org/docs/
LibASTMatchers.html

328

V. Savchenko, K. Sorokin, G. Pankratenko et al.

2. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim,
E., MacCormack, A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sul-
livan, K., Zazworka, N.: Managing technical debt in software-reliant sys-
tems. In: Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research. pp. 47–52. FoSER ’10, ACM, New York, NY, USA
(2010). https://doi.org/10.1145/1882362.1882373, http://doi.acm.org/10.1145/
1882362.1882373

3. Cunningham, W.: The wycash portfolio management system. SIGPLAN OOPS
Mess. 4(2), 29–30 (Dec 1992). https://doi.org/10.1145/157710.157715, http://

doi.acm.org/10.1145/157710.157715

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional (June 1999)

5. G. Waddington, D., Yao, B.: High-fidelity c/c++ code transformation.
Electronic Notes in Theoretical Computer Science 141, 35–56 (01 2007).
https://doi.org/10.1016/j.entcs.2005.04.037

6. Graf, E., Zgraggen, G., Sommerlad, P.: Refactoring support for the c++ develop-
ment tooling. In: OOPSLA Companion (2007)

7. Lahoda, J., Bečička, J., Ruijs, R.B.: Custom declarative refactoring in
netbeans: Tool demonstration. In: Proceedings of the Fifth Workshop on
Refactoring Tools. pp. 63–64. WRT ’12, ACM, New York, NY, USA
(2012). https://doi.org/10.1145/2328876.2328886, http://doi.acm.org/10.1145/
2328876.2328886

8. Meyerovich, L.A., Rabkin, A.S.: Empirical analysis of program-
ming language adoption. SIGPLAN Not. 48(10), 1–18 (Oct 2013).
https://doi.org/10.1145/2544173.2509515, http://doi.acm.org/10.1145/

2544173.2509515

9. Murphy-Hill, E.R., Parnin, C., Black, A.P.: How we refactor, and how we know it.
In: ICSE. pp. 287–297. IEEE (2009), http://dblp.uni-trier.de/db/conf/icse/
icse2009.html#Murphy-HillPB09

10. Pinto, G.H., Kamei, F.: What programmers say about refactoring tools?: An em-
pirical investigation of stack overflow. In: Proceedings of the 2013 ACM Workshop
on Workshop on Refactoring Tools. pp. 33–36. WRT ’13, ACM, New York, NY,
USA (2013). https://doi.org/10.1145/2541348.2541357, http://doi.acm.org/10.
1145/2541348.2541357

11. Ray, B., Posnett, D., Devanbu, P., Filkov, V.: A large-scale study of programming
languages and code quality in github. Commun. ACM 60(10), 91–100 (Sep 2017).
https://doi.org/10.1145/3126905, http://doi.acm.org/10.1145/3126905

12. Tracz, W.: Refactoring for software design smells: Managing technical debt by
girish suryanarayana, ganesh samarthyam, and tushar sharma. ACM SIGSOFT
Software Engineering Notes 40(6), 36 (2015), http://dblp.uni-trier.de/db/
journals/sigsoft/sigsoft40.html#Tracz15a

13. Wasserman, L.: Scalable, example-based refactorings with refaster. In: Proceedings
of the 2013 ACM workshop on Workshop on refactoring tools. pp. 25–28. ACM
(2013)

14. Wright, H., Jasper, D., Klimek, M., Carruth, C., Wan, Z.: Large-scale automated
refactoring using clangmr. In: Proceedings of the 29th International Conference on
Software Maintenance (2013)

329

Deductive proof for industrial applications

Vassil Todorov1, Safouan Taha2, Frédéric Boulanger2 and Armando
Hernandez1

1 Groupe PSA, France
2 LRI, CentraleSupélec, Université Paris-Saclay, France

Abstract. Automotive embedded systems are increasingly more com-
plex and heterogeneous but they are required to be safe, reliable and
autonomous. In the near future, self-driving cars are expected to be pro-
duced and the authorities would probably require their certification in
order to achieve a higher confidence level. Theoretical research and expe-
rience show that when using conventional design approaches it is impos-
sible to guarantee high confidence to those systems. The way taken by
some industries (e.g. aerospace, railway, nuclear) in order to achieve this
higher level of confidence was by using formal verification techniques.
One of those techniques is called Deductive proof. It can give a higher
level of confidence in proving critical properties that cannot be proved
by model checking or for library functions shared by multiple projects.
In this paper, we share our experience about the application of Deductive
proof for industrial applications. We show the limitations of the current
approaches and discuss some possible solutions. Our discussion is backed
up by an example for calculating a square root using linear interpolation.

Keywords: Software verification · Formal methods · Deductive proof ·
SMT solving

1 Introduction and Motivation

The automotive industry relies mostly on a model-based approach for developing
embedded software. It consists in connecting common library blocks (operators)
to design and simulate a model of the behavior to be produced. It uses a higher
level of abstraction than the code. Code with the behavior of the model is then
produced automatically. The most common tools used today are Simulink, from
the MathWorks, and Scade, from ANSYS.

Sometimes, the provided library blocks are not sufficient and the designer can
import external operators. For our use case, the external operator is a function
written in the C programming language calculating a square root using linear
interpolation. Lookup tables using linear interpolation are frequently used in
automotive embedded software, as they need less processing power. Using de-
ductive proof, our goal is to prove this function correct and thus provide it as
a library to the designers. We expect that in the near future, authorities would
require that highly critical software for self-driving cars would be certified. This
means that we should be able to provide proofs of correction for produced code.

330

In a previous paper [12], we summarized our experience about applying tools
that use formal methods on industrial software. In this paper, we give details
about our Deductive method application experience, the problems we encoun-
tered and how these problems were solved. Our function was implemented in C
and SPARK (based on Ada), and we used Frama-C WP [9] and GNATprove [3]
to prove its correctness.

2 Tools for deductive reasoning

As we are interested in tools used by the industry, we present here only those that
are mostly used today: Atelier B3, Caveat [11], Frama-C WP and GNATprove.

Atelier B. Atelier B is a tool supporting the B method, which is a formal
methodology to specify, build and implement software systems. The B method
was originally developed in the 1980s by Jean-Raymond Abrial [1] and is based
on first-order logic, set theory, abstract machine theory and refinement theory.

Caveat and Frama-C WP. Caveat and Frama-C WP are tools for deductive
reasoning over C programs. Caveat was introduced at Airbus in 2002 to replace
unit tests by unit proof and thus obtain a cost reduction and quality improvement
over this part of the development process. The tool with its back-end Alt-Ergo
were certified and recognized by the aviation certification authorities. Caveat
analyzed C programs (with some restrictions in terms of language constructs)
and had its own specification language based on a first order logic. Frama-C
is the academic open source tool developed by the same team as Caveat. Its
WP module verifies properties written in the ACSL4 language in a deductive
manner. It implements the Weakest Precondition calculus and targets multiple
automatic solvers via the Why3 platform5.

GNATprove. GNATprove is a tool for deductive reasoning over SPARK (based
on Ada) programs. It implements the Weakest Precondition calculus and uses
the Why3 platform to target multiple automatic provers. If a property cannot
be proved, it brings a useful counterexample.

3 Experiment

We take a part of existing production C code and would like to investigate the use
of deductive proof in our development process. This code calculates the square

3 Atelier B: https://www.atelierb.eu
4 ACSL specification language: https://frama-c.com/acsl.html
5 Why3: http://why3.lri.fr/

331

root Y of X from 0.00 to 100.00 by linear integer interpolation between two
known points (Xa, Ya) and (Xb, Yb) using the following formula:

Y = Ya + (X −Xa)
(Yb − Ya)

(Xb −Xa)

This function is shared in a library, so we want to prove that the calculus is
correct for a given precision (between -0.3 and 0.1) before distributing it to the
software designers. For our experiment, we used Frama-C with its WP module
on our original code, and rewrote the function in SPARK (special thanks to
Yannick Moy from AdaCore) to compare different approaches in using weakest
precondition for proving properties. We did not use the B method because it is
more suitable for the development of control-based modules, not calculus ones.

We proceeded in two steps. Firstly, we proved correct a simplified function
containing only eight values in the interpolation table. After proving it correct,
we extended our table to 41 values, which is representative of the production
code. We present on the next figures the complete code we had to prove. All
the values of the interpolation table are not listed for compactness. Fig. 1 shows
the interpolation function with its annotated code using ACSL for Frama-C. We
calculate the square root of a number between 0.00 and 100.00 using an integer
representation because of a hardware limitation. We consider it as a fix-point
number multiplied by 100, thus the input range is between 0 and 10000 and
the returned result is a linearly interpolated value between 0 and 1000 (to be
interpreted as a number between 0.00 and 10.00).

Clauses labeled with requires represent the preconditions and those labeled
with ensures are the postconditions of the proof. The specification or the con-
tract to be proved is written at a function level in special commented lines, which

typedef unsigned short uint16;
typedef unsigned char uint8;
/*@ requires 0 <= Xa <= 10000 && 0 <= Xb <= 10000;
requires 0 <= Ya <= 1000 && 0 <= Yb <= 1000;
requires Yb > Ya && Xb >= Xa;
requires Xa <= X <= Xb;
ensures Xa != Xb ==> \result == (Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));
ensures Xa == Xb ==> \result == Ya;
assigns \nothing;
*/
uint16 LinearInterpolation(uint16 Xa, uint16 Ya, uint16 Xb, uint16 Yb,

uint16 X) {
if (Xa != Xb) {

return(Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));
} else {

return(Ya);
}

}

Fig. 1. Annotated interpolation function for Frama-C WP automatic proof

332

are ignored by the compiler but analyzed by Frama-C. Preconditions are defined
from the user specification (it shall calculate an interpolation for numbers be-
tween 0 and 10000, yielding results between 0 and 1000, or return an exact value
if it is known). For this function, the postconditions look simple but the proof is
not easy. Actually, computer programs use modular arithmetic and the difficulty
is to prove that the mathematical formula in the postcondition has the same be-
havior as the one in the code. For example, we need to prove that the formula in
the code does not produce an overflow and that code behaves as math with the
given preconditions. The interpolation function is called by the IntSqrt function
that we present on Fig. 2. This function has two behaviors specified in ACSL:
one for numbers between 0 and 10000 and one for numbers greater than 10000.
For the first behavior, the square root is calculated by interpolation between the
bounds of the interval that contains the provided number. The second behavior
is for numbers greater than the maximum value of the interpolation table. We
consider returning the square root for the maximum value we know i.e. 1000 in
our case.

We prove number − 30 ≤ result2

100
≤ number + 10 to take into account the

precision specified. As there is a loop in this function, we need to provide the

/*@ assigns \nothing;
behavior in_range:
assumes number <= 10000;
ensures number-30 <= (\result)*(\result)/100 <= number+10;
behavior out_of_range:
assumes number > 10000;
ensures \result == 1000;
complete behaviors in_range, out_of_range;
disjoint behaviors in_range, out_of_range;
*/
uint16 IntSqrt(uint16 number) {

uint8 i = 0;
uint16 TabX[41] = {0,5,10,25,40,...,7500,8000,8600,9200,10000};
uint16 TabY[41] = {0,22,32,50,63,...,866,894,927,959,1000};
/*@ loop invariant 0 <= i <= 40 && number >= TabX[i];
loop assigns i;
loop variant 40-i; */
for (i = 0 ; i < 40 ; i++) {

if ((number >= TabX[i]) && (number <= TabX[i+1])) {
return(LinearInterpolation(TabX[i], TabY[i], TabX[i+1],

TabY[i+1], number));
}

}
return TabY[40];

}

Fig. 2. Annotated square root function for Frama-C WP automatic proof

333

prover an invariant for it. This invariant is a clause that is true before, during
and after the loop. We also need to indicate a variant i.e. a decreasing positive
function for this loop to prove its termination.

The equivalent SPARK code is presented on Fig. 3. The main difference with
the C programming language is that in SPARK we can specify a bit-vector data
type. For our use case, it is more convenient to use bit-vectors for reasoning over
modular arithmetic because most SMT solvers used as back-end via Why3 have a
theory of bit-vectors. GNATprove has also a feature to return a counterexample
when a contract fails, what can be useful for debugging. Basically, it is based on
the model that can be obtained by the SMT solver. Actually, the SMT solver is
called on the negation of the formula to be proved. If the answer is “unsat” the
formula is valid. If the answer is “sat” then the formula is not valid and getting
its model gives a counterexample.

type Unsigned is mod 2**32;
subtype uint16 is Unsigned range 0 .. 65535;
type UINT16_ARR is array (Positive range <>) of uint16;
Max : constant := 10_000;
function LinearInterpolation(Xa, Ya, Xb, Yb, X : uint16) return uint16 is

Result : uint16;
begin

if Xa /= Xb then
Result := Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa);

else
Result := Ya;

end if;
return Result;

end LinearInterpolation;
function IntSqrt(number : uint16) return uint16

with Global => null, Contract_Cases =>
(number <= Max => IntSqrt’Result * IntSqrt’Result / 100 + 30 >=

number and number+10 >= IntSqrt’Result * IntSqrt’Result / 100,
number > Max => IntSqrt’Result = 1000) is

TabX : UINT16_ARR(1 .. 41) := (0,5,10,25,40,...,8000,8600,9200,10000);
TabY : UINT16_ARR(1 .. 41) := (0,22,32,50,63,...,894,927,959,1000);

begin
for I in 1 .. 40 loop

pragma Loop_Invariant (for all J in 1 .. I => number >= TabX(J));
if number in TabX(I) .. TabX(I+1) then

return LinearInterpolation (TabX(I), TabY(I), TabX(I+1),
TabY(I+1), number);

end if;
end loop;
return TabY(41);

end IntSqrt;

Fig. 3. SPARK code for automatic proof with GNATprove

334

Another feature of GNATprove is to do a dynamic contract checking. Func-
tion IntSqrt is called with all possible values of its parameter number and the
tool checks the validity for each value of the already present function contracts
for deductive proof. The equivalent feature for Frama-C is the E-ACSL plugin6.

4 Results

Scenarios. Our different scenarios are presented on Fig. 4. The SPARK code us-
ing bit-vectors is transformed by GNATprove into Verification Conditions (VCs)
that are independent goals to be proved. It generates a WhyML file for Why3.
The role of Why3 is to manage the proof using appropriate languages and the-
ories for each prover. Frama-C WP transforms annotated C code into VCs and
generates one WhyML file per function. When using Why3 quantifiers are intro-
duced but unfortunately, all SMT solvers do not support them. There was also

Fig. 4. Using deductive proof on C and SPARK code

an experimental feature in Frama-C providing a direct SMT-LIB output without
quantifiers. We used the SMT-LIB output of Frama-C and Why3 to understand
the difficulties the prover had when it did not succeed.

Simplified toy example. We began with a simple example using only eight
values (0, 5, 10, 25, 40, 55, 75 and 100) in the interpolation table. Frama-C and
GNATprove proved it correct in a reasonable time (less than 10 seconds).

Real production example. Then we extended the interpolation table to 41
values (ranging from 1 to 10000 instead of 1 to 100). We expected that it would be
easy to prove. In reality, the response time increased exponentially. GNATprove
proved our code in almost 100 seconds using CVC4 and Z3 thanks to the use of
bit-vectors. The Frama-C official version was unable to prove 2 of the 51 goals.

6 Frama-C E-ACSL: https://frama-c.com/eacsl.html

335

We wanted to understand why scaling from 8 to 41 values in a table generated
so much difficulties to the solvers we used. We used different ways to request
solvers to prove our most difficult goals – the postconditions of each function. The
main difficulty was to prove that the nonlinear interpolation function, returning
a 16-bit unsigned integer, does not overflow and has the same behavior as its
mathematical equivalent. It is not a trivial problem and few SMT solvers were
able to prove it. To do so, they had to use some sort of advanced interval analysis
and propagation techniques. We also noticed that it was easier to prove these
goals using the quantifier-free formulae approach. For example, CVC4 proved
a goal using the SMT-LIB output of Frama-C without quantifiers while it was
unable to prove the same goal using the Why3 SMT output with quantifiers.
The main difference between the quantifier-free SMT output of Frama-C and the
Why3 quantified SMT output is that Why3 redefines operators such as division
using uninterpreted functions. To simplify the problem, we removed these specific
functions and used the standard SMT div operator. Thus, the proof succeeded
using a nonlinear logic containing bit-vectors. Disabling bit-vectors from that
logic resulted in an impossibility to prove the result. On the other hand, the
quantifier-free SMT output did not need bit-vector logic to be proved.

As solvers are complex programs and may contain bugs, we want to validate
our goals by at least 2 solvers. In Table 1, we summarize the results obtained
for our most difficult goals. The proof approach represents the way to use the
provers. We can either use Frama-C and Why3 to access a large number of
solvers or directly send specific SMT-LIB requests to the solvers. The first ap-
proach introduces quantifiers and uninterpreted functions. The second excludes
quantifiers and uses SMT-LIB functions. For our use case, Colibri and CVC4
were the most relevant solvers.

Table 1. Results in seconds for the most difficult goals using Frama-C

Proof approach IntSqrt_in_range_post LinearInterpolation_post

W
hy

3

Alt-Ergo Timeout 26662
Colibri Unsupported Unsupported
CVC4 unknown unknown
Yices2 Unsupported Unsupported
Z3 unknown 1278

SM
T

-L
IB

Colibri 2.9 0.3
CVC4 3165 3.3
Yices2 Timeout 0.1
Z3 unknown unknown

336

5 Conclusions and Future work

In this paper, we have illustrated an industrial use case about proving the cor-
rectness of a square root function using linear interpolation. We used Frama-C
WP and GNATprove, which are two industrial tools for deductive formal proof.
Even if our function was relatively simple, we found that nonlinear and mod-
ular arithmetic are still a challenge for most of the provers. Two non-standard
approaches worked well for us: the use of bit-vectors in SPARK and the direct
SMT-LIB quantifier-free output of Frama-C. Bit-vectors are well supported in
most of the modern SMT solvers and are well suited for problems that involve
modular arithmetic but they do not scale up. For our use case, SMT requests
without quantifiers performed better.

Using deductive methods is very promising in industrial context for safety-
critical applications. It can replace unit tests as shown in [10] and thus decrease
cost while increasing quality. It is also an intellectual activity that brings more
satisfaction for engineers compared to test activity. We expect that in the future,
the competition between solvers will bring a higher level of automation and help
with useful counterexamples. We plan to investigate how proof artifacts obtained
by deductive tools could be combined with artifacts obtained by model checking
and abstract interpretation tools.

References

1. Abrial, J.R.: The B-book : assigning programs to meanings (1996)
2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King,

T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.)
(CAV’11). LNCS, vol. 6806, pp. 171–177. Springer (Jul 2011)

3. Chapman, R.: Industrial Experience with SPARK. Ada Letters XX(4) (2000)
4. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT

Workshop: International Workshop on SMT. Oxford, United Kingdom (Jul 2018)
5. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. TACAS’08/ETAPS’08,

Springer-Verlag, Berlin, Heidelberg (2008)
6. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of

Programs. Commun. ACM 18(8), 453–457 (Aug 1975)
7. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification.

pp. 737–744. Springer International Publishing, Cham (2014)
8. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming (Oct 1969)
9. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:

A software analysis perspective. Formal Aspects of Computing 27(3) (2015)
10. Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or Formal Verifi-

cation: DO-178c Alternatives and Industrial Experience. IEEE Soft. 30(3) (2013)
11. Randimbivololona, F., Souyris, J., Baudin, P., Pacalet, A., Raguideau, J., Schoen,

D.: Applying Formal Proof Techniques to Avionics Software: A Pragmatic Ap-
proach. In: Proceedings of the Wold Congress on Formal Methods in the Develop-
ment of Computing Systems. Springer-Verlag, London (1999)

12. Todorov, V., Boulanger, F., Taha, S.: Formal Verification of Automotive Embedded
Software. In: Proceedings of the 6th Conference on Formal Methods in Software
Engineering. pp. 84–87. FormaliSE ’18, ACM, New York, NY, USA (2018)

337

Providing the sharing of heterogeneous ontology
design patterns in the development of the
ontologies of scientific subject domains�

Yury Zagorulko and Olesya Borovikova

A.P. Ershov Institute of Informatics Systems, Lavrent’ev av., 6, Novosibirsk 630090,
Russia {zagor, olesya}@iis.nsk.su

Abstract. The paper describes an approach to solving the problems
of using ontology design patterns (ODPs) for the development of the
ontologies of scientific subject domains (SSDs). This approach offers a
system of the heterogeneous ODPs, including both universal patterns
and patterns oriented to the presentation of scientific knowledge, as well
as methods of their joint use for building ontologies of SSDs. The use
of this approach allows us to save resources spent on the development
of ontologies, avoid errors common in ontological modeling, as well as
ensure a consistent presentation of all the entities of the ontologies of
scientific subject domains.

Keywords: Ontology · Scientific subject domain · Ontology design pat-
tern · Structural pattern · Content pattern.

1 Introduction

Currently, ontologies are the main means of formalization and systematization of
knowledge in various subject areas including scientific subject domains (SSDs).
(Note that by “scientific subject domain” we mean a subject area that encom-
passes a branch of science or field of scientific knowledge in all its aspects.)

The development of ontology is a very complicated and time-consuming pro-
cess. To simplify and facilitate it, various methods of and approaches to ontology
development [1–4] have been proposed. Recently, an approach based on ontology
design patterns (ODPs) [5–7] has gained popularity. According to this approach,
ODPs are documented descriptions of proven solutions to typical problems of
ontological modeling. Despite the fact that the use of ODPs allows us to greatly
simplify the process of building ontologies and improves their quality, ontology
design patterns have not yet found wide practical application due to a number
of problems arising from their use.

One of the widespread problems of pattern reuse is their complexity: it is
often difficult for the developer of a new ontology to understand the semantics
the authors have laid down in the pattern. Another common problem is that the

� The work was financially supported by the Russian Foundation for Basic Research
(Grant No. 19-07-00762).

338

patterns are described and used separately and do not constitute a single system.
In the development of ontologies of SSDs, there is yet another important problem,
which is the absence of patterns designed to present scientific knowledge.

The paper presents the approach to the construction of ontologies of scientific
subject domains based on the ODPs. The approach complements and develops
the ontology development methodology proposed by the authors and used in
development of intelligent scientific internet resources [8]. The ODPs used in
this approach emerged as a result of solving the problems of ontological mod-
eling, which the authors of the paper encountered in the process of developing
ontologies for various scientific subject domains [9, 10].

This paper is organized as follows. The second section contains a short review
of the ontology design patterns; the third section analyzes the problems of their
use. The proposed approach to the development of ontologies of scientific subject
domains is described in detail in the fourth section. The main advantages and
practical benefits of this approach, as well as plans for the near future, are
discussed in the Conclusion.

2 A Short Review of Ontology Design Patterns

The progenitors of ontology design patterns are design patterns, widely used in
software development [11]. Similar to this design patterns, ODPs are employed
to describe solutions of typical problems arising in the development of ontologies
[7].

Depending on the problems for solution of which the ODPs are created,
we distinguish between structural patterns, correspondence patterns, content
patterns, reasoning patterns, presentation patterns and lexico-syntactic patterns.
(Note that this typology of patterns was proposed in the framework of the NeOn
project [12].)

From all types of patterns listed above only structural patterns, patterns of
content and presentation are used in the development of ontologies.

The structural patterns either fix the ways to solve problems caused by the
limitations of the expressive capabilities of ontology description languages or
specify the general (modular) structure of an ontology. Patterns of the first type
are called logical patterns, and patterns of the second type are called architec-
tural patterns.

The content patterns define the ways of representing typical ontology frag-
ments, on the basis of which ontologies of a whole class of subject domains can
be built.

The presentation patterns actually represent the rules (recommendations)
for naming and annotating elements of ontology. The application of these rules
should increase the readability of the ontology, as well as the convenience and
ease of its use.

Currently, several catalogs of ODPs have been created and are developing
[13–15]. The most complete of them is posted on the ODPA (Association for

339

Ontology Design & Patterns) portal [13], created as part of the NeOn project
[12].

ODPs are most often described in the format proposed on the ODPA as-
sociation portal [13]. According to it, the description of the pattern includes
information about its author and scope, its graphical representation, text de-
scription, a set of scenarios and examples of usages, and links to other patterns.
Content patterns can also be supplied with a set of competency questions [6, 7],
which can be used both in the development of patterns and in the search for the
desired patterns in the development of a specific ontology.

3 Problems of Using Ontology Design Patterns

The first problem of pattern reuse is due to their complexity: it is often difficult
for the developer of a new ontology to understand the semantics that the authors
have laid down in the pattern. Recently there has been a tendency to simplify
patterns [16]. Even so-called meta-patterns, describing very simple entities, were
suggested [17]. However, such simple patterns cannot significantly facilitate the
construction of SSD ontologies.

Another problem is caused by the lack of convenient ontology development
tools supporting the use of ODPs. Here we can note the plugins for the ontology
development tool of the project NeOn [12] and the ontology editor WebProtégé
[18]. However, the first plugin is available only to the participants of the NeOn
project, and the second can be used only in the WebProtégé editor, which is not
yet very popular among ontology developers due to its limited functionality (in
comparison with the desktop version).

The third problem is that the patterns are described and applied separately
and do not constitute a single system. One more problem associated with this
problem is the lack of systematic sets of patterns targeted at subject matter
experts. Existing catalogs of ontology design patterns do not meet this require-
ment.

In our opinion, the OTTR library (Reasonable Ontology Templates) [19] is
the closest to solving the latter problem. This library provides a language for
the representation of ontology design patterns and software supporting it. The
OTTR library supplies ontology developers with patterns in the form of high-
level OWL macros, which makes possible their use by subject matter experts.

As for the availability of patterns that can be used in the development of
SSD ontologies, the catalogs mentioned above do not even partially cover the
needs of building ontologies of scientific fields.

4 Approach to the Development of Ontologies of
Scientific Subject Domains

This section describes an approach to solving the problem of reusing ODPs in
the development of ontologies of scientific subject domains. This approach offers

340

a system of heterogeneous ODPs and methods for their sharing (joint use) for
building SSD ontology. At the moment, there are three types of patterns in the
system: structural logical patterns, content patterns and presentation patterns.
One part of these patterns is universal, and the other part is focused on the
presentation of scientific knowledge.

An important feature of this approach is the use of base (core) ontologies,
which include only the most general entities that are not dependent on a par-
ticular SSD. These ontologies were previously developed for the technology for
building subject-based intelligent scientific internet resources [8] and are now
represented by content patterns which were developed for all main entities of
base ontologies. In this regard, the construction of SSD ontology using the base
ontologies is reduced to their specialization and expansion. In particular, the
content patterns presented in the base ontologies are tuned (specialized) to a
specific SSD. As for the population of SSD ontology with actual data, it is per-
formed by instantiation of content patterns. This process is supported by a data
editor developed in the frameworks of this approach.

4.1 An SSD Ontology and Base Ontologies

Usually the ontology of any SSD contains not only descriptions of its inherent
system of concepts and methods for processing and analyzing information, but
also descriptions of relevant information resources. In this regard, an SSD on-
tology can be represented as a system of interrelated ontologies responsible for
representing the above three components of knowledge, namely, the ontology of
the knowledge domain, the ontology of tasks and methods, and the ontology of
scientific Internet resources.

The ontology of the knowledge domain defines the system of concepts and
relations intended for a detailed description of a modeled SSD and its scientific
and research activities. The ontology of tasks and methods describes the tasks
solved in a given SSD and the methods for their solution. The ontology of sci-
entific Internet resources is used to describe the information resources available
on the Internet relevant to this SSD.

Since the development of an ontology of an SSD from scratch is not an
easy task, we have proposed a method for its construction based on a small
but representative set of base ontologies that include only the most general
entities not dependent on a particular SSD. This set includes: (1) the ontology of
scientific knowledge, (2) the ontology of scientific activity, (3) the base ontology
of tasks and methods, (4) the base ontology of information resources.

As mentioned above, all base ontologies have specifications in the OWL lan-
guage [21].

The ontology of scientific knowledge contains classes that define structures for
describing concepts included in any SSD. Such concepts are Division of science,
Object of research, Subject of research, Method of research, Scientific result, etc.

The ontology of scientific activity includes classes of concepts related to the
organization of research activities, such as Person, Organization, Event, Activity
(Scientific activity), Project, Publication, etc.

341

The base ontology of information resources includes the class Information
resource as the main class. The set of properties (attributes and relationships)
of this class is based on the Dublin core standard [20].

Concepts and relations of base ontology of tasks and methods are used to de-
scribe tasks to be solved in a given SSD, methods for their solution and software
components and algorithms implementing them.

4.2 A System of Ontology Design Patterns

To support the considered approach, a set of ODPs [21] was developed and im-
plemented in the OWL language [22]. This set includes various types of patterns:
structural logical patterns, content patterns and presentation patterns. All these
patterns are combined into a single system.

Note that in this approach the presentation patterns define the rules for
naming and annotating elements of ontology, which are close to the generally
accepted ones [23].

The need to use structural logical patterns was attributed to the absence in
OWL of expressive means for representing complex entities and structures re-
quired for building SSD ontologies, in particular, the ranges of admissible values,
and n-ary and attributed relations (a binary relation with attributes).

The pattern of representation of the range of admissible values is intended
to specify such structures that are called domains in the relational data model
and are characterized by a name and a set of elementary values. Domains are
convenient to use for describing possible values of class properties when the entire
set of such values is known in advance. In this pattern, the domain is defined by
an enumerated class, which is the successor of the specially introduced service
class called the Domain class and consists of a finite set of different individuals
(objects) determining the possible values of a certain property (see Fig. 1).

Fig. 1. Structural pattern of representation of the range of admissible values.

Examples of such domains are “Geographic type”, “Position”, “Type of orga-
nization”, “Type of publication”, which include, respectively, types of localities,
types of positions in organization, types of organizations and publications.

Note that in the figures of the patterns presented in the paper, classes are
shown in the form of ellipses, individuals and attributes are in the form of rectan-
gles. An ObjectProperty type connection (a relation) is shown by a solid straight
line, and a DataProperty type connection (an attribute), by a dash line. At the

342

same time, classes, attributes and individuals, which must necessarily be present
in the pattern, are represented by figures surrounded by a thick line.

To represent an attributed relation, a structural pattern is proposed. It is
shown in the left side of Fig. 2.

Fig. 2. Structural pattern of the binary attributed relation and an example of its
specialization.

The central place in this pattern is occupied by the service class Attributed
relation with which the base classes of an ontology modeling the arguments of
the binary relation are connected by the links isArgument1 and hasArgument2.
At the same time, the attributes of a binary relation are modeled by the prop-
erties of this class (in OWL notation, either DataProperty or ObjectProperty)
hasAttribute and hasAttributeFromDomain. For this pattern, it is required to
set constraints on the obligatoriness and uniqueness of the arguments of the
attributed relation (Class 1 and Class 2).

To represent a specific type of the attributed relation, a new class, which is
its successor, can be defined.

The right side of Figure 2 shows an example of a structural pattern for
describing a person’s participation in scientific activities (the attributed relation
participateIn). Here, the Person class serves as the first argument, the Activity
class is the second argument. The pattern also allows us to specify the start and
end dates of the person’s participation in an activity, as well as his/her role in
it.

Similarly, we can build a pattern for an n-ary relation. Note that for this
pattern we must also specify the order of the arguments.

343

For a uniform and consistent presentation of the concepts used in SSD and
their properties, content patterns were constructed for the main concepts of base
ontologies using the structural patterns proposed. Due to this, the development
of an ontology of a specific SSD mainly consists in the specialization of content
patterns and the construction of fragments of a target ontology based on them.

As an example, we give a pattern intended for the description of applied tasks
solved within the framework of a scientific subject domain (see Fig. 3).

Fig. 3. Pattern for describing the applied task.

The following set of competency questions represents the content of this
pattern:

What methods solve the applied task?
What data is used for solving the applied task?
What is the result of solving the applied task?
Who formulates the task?
and etc.
It should be noted that the content patterns included in the proposed set

are interrelated through common concepts and relationships and thus form a
single network of patterns. For example, presented in Fig. 4 content patterns,
describing the concepts of Activity and Person, are interconnected not only by
the attributed relation participateIn, but also through the concepts of Scientific
result, Method of research, Publication, and Organization.

Note that in the Fig. 4 the attributed relations participateIn and workIn are
shown by a dotted line.

4.3 Methods of Building Ontologies of SSDs

Building an SSD ontology involves two main steps:
1. Construction of the components of SSD ontology using the base ontologies
through their specialization and expansion.
2. Population of SSD ontology with actual data by instantiation of content pat-
terns presented in base ontologies and specialized at step 1.

344

Fig. 4. Fragment of a network of patterns.

Note that in this approach the ontology of the knowledge domain is built
on the basis of ontologies of scientific knowledge and scientific activity; ontology
of tasks and methods, on the basis of base ontology of tasks and methods; and
ontology of scientific Internet resources, on the basis of base ontology of Internet
resources.

The use of content patterns is supported by a special editor, which allows
specialists in the subject area to populate the ontology with actual data, i.e.
objects of classes and their properties. When populating an ontology with the
help of the editor, the user selects the required class from the class hierarchy
presented to him, and the editor uses the class name to find the corresponding
pattern. After that, the editor, using the information from the pattern, builds
a form containing the fields for filling in all the properties of the object of this
class. At the same time, the editor can interpret the relations with attributes
described by the patterns. Thanks to this, the user can work with the properties
of the created object that are set by such relations as with “ordinary” object
properties. The difference consists only in the need to specify the values of the
attributes in a separate window.

5 Conclusion and Future work

The paper discusses the problems of applying ontological design patterns for the
development of ontologies of scientific subject domains. An approach to the de-
velopment of SSD ontologies that solves most of these problems is presented. This
approach is supported by a system of heterogeneous ontology design patterns,
describing the main structures and entities necessary for describing scientific do-
mains, and the data editor, which makes it possible to populate the ontology

345

with actual data by instantiation of content patterns. Due to the simplicity and
clarity of the pattern system and the data editor, this approach can be used
not only by knowledge engineers, but also by specialists in the modeled area of
knowledge.

This approach has shown its practical utility in the development of ontologies
of various scientific subject domains (“Decision Support” [24], “Active Seismol-
ogy” [25], etc.).

In the near future, it is planned to expand this approach in such a way that it
provides automated population of ontology. For this, the pattern system will be
expanded with lexico-syntactic patterns [26], which will be used to facilitate the
population (completion) of ontologies based on texts in the natural language.
Lexico-syntactic patterns are supposed to be automatically generated based on
the existing content and structural patterns using the synonyms dictionary and
subject area thesaurus.

References

1. Fernández-López, M., Gómez-Pérez, A., Pazos, A., Pazos, J. Building a Chemi-
cal Ontology Using Methontology and the Ontology Design Environment. IEEE
Intelligent Systems & their applications 4(1), pp. 37–46 (1999).

2. Sure, Y., Staab, S., Studer, R.: Ontology Engineering Methodology. In: Staab S.,
Studer R. (eds.) Handbook on Ontologies. pp. 135–152. Springer Verlag, Berlin
(2009).

3. Pinto, H., Staab, S., Tempich, C.: DILIGENT: Towards a fine-grained methodology
for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In: the
proceedings of the 16th European Conference on Artificial Intelligence. Frontiers in
Artificial Intelligence and Applications, 110, pp. 393–397. IOS Press, Amsterdam
(2004).

4. De Nicola, A., Missikoff, M., Navigli, R.: A Proposal for a Unified Process for
Ontology Building: UPON. In: Andersen K.V., Debenham J., Wagner R. (eds)
Database and Expert Systems Applications. DEXA 2005. Lecture Notes in Com-
puter Science, vol. 3588, pp. 655–664. Springer, Berlin, Heidelberg (2005).

5. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R.
(eds.) Hand-book on Ontologies, International Handbooks on Information Systems,
pp. 221–243. Springer-Verlag, Berlin, Heidelberg (2009).

6. Blomqvist, E., Hammar, K., Presutti, V.: Engineering Ontologies with Patterns:
The eXtreme Design Methodology. In: Hitzler, P., Gangemi, A., Janowicz, K.,
Krisnadhi, A., Presutti, V. (eds.) Ontology Engineering with Ontology Design
Patterns, Studies on the Semantic Web, vol.25, pp. 23–50. IOS Press, Amsterdam
(2016).

7. Karima, N., Hammar, K., Hitzler, P.: How to Document Ontology Design Patterns.
In: Hammar, K., Hitzler, P., Krisnadhi, A., awrynowicz, A., Nuzzolese, A., Solanki,
M. (eds.) Advances in Ontology Design and Patterns, Studies on the Semantic Web,
vol.32, pp. 15–28. IOS Press, Amsterdam/AKA Verlag, Berlin (2017).

8. Zagorulko, Y., Zagorulko, G.: Ontology-Based Technology for Development of
Intelligent Scientific Internet Resources // Intelligent Software Methodologies,
Tools and Techniques. Proceedings of 14th International Conference, SoMet 2015.
Hamido Fujita, Guido Guizzi (Eds.), Communications in Computer and Informa-
tion Science, Vol. 532, Springer International Publishing, 2015.pp. 227–241.

346

9. Zagorulko, Yu., Borovikova, O.: Technology of Ontology Building for Knowledge
Portals on Humanities. In: Wolf, K.E. et al.(eds.) Knowledge Processing and Data
Analysis. KONT/KPP 2007. Lecture Notes in Artificial Intelligence, vol. 6581, pp.
203–216. Springer-Verlag Berlin, Heidelberg (2011).

10. Borovikova, O., Globa, L., Novogrudska, R., Ternovoy, M., Zagorulko, G.,
Zagorulko, Yu.: Methodology for knowledge portals development: background,
foundations, experience of application, problems and prospects. Joint NCC & IIS
Bulletin, Series Computer Science (34), 73–92 (2012).

11. Johnson, R., Vlissides, J., Helm, R.: Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma. Addison-Wesley Professional, Boston (1994).

12. NeOn Project, http://www.neon-project.org. Last accessed 2 Feb 2019.
13. Association for Ontology Design & Patterns, http://ontologydesignpatterns.org.

Last accessed 2 Feb 2019.
14. Ontology Design Patterns (ODPs) Public Catalog, http://odps.sourceforge.net.

Last accessed 2 Feb 2019.
15. Dodds, L., Davis, I.: Linked Data Patterns (2012),

http://patterns.dataincubator.org/book. Last accessed 2 Feb 2019.
16. Krisnadhi, A., Hitzler, P.: A Core Pattern for Events. In: Hammar, K., Hitzler, P.,

Krisnadhi, A. (eds.) Advances in Ontology Design and Patterns, 32. IOS Press,
Kobe, Japan, pp: 29–37 (2017).

17. Krisnadhi, A., Hitzler, P.: The Stub Metapattern. A Core Pattern for Events. In:
Hammar, K., Hitzler, P., Krisnadhi, A. (eds.) Advances in Ontology Design and
Patterns, 32. IOS Press, Kobe, Japan, pp: 29–45 (2017).

18. Hammar, K.: Ontology Design Patterns in WebProtg. In the proceedings of 14th
Interna-tional Semantic Web Conference (ISWC-2015). Posters & Demonstra-
tions Track. CEUR Workshop Proceedings, 1486, (2015) http://ceur-ws.org/Vol-
1486/paper 50.pdf. Last accessed 2 Feb 2019.

19. Skjveland, M.G., Forssell, H., Klwer, J.W., Lupp, D., Thorstensen, E., Waaler, A.:
Pattern-Based Ontology Design and Instantiation with Reasonable Ontology Tem-
plates. In: the proceedings of the 8th Workshop on Ontology Design and Patterns
(WOP 2017). Vienna, Austria, October 21. CEUR Workshop Proceedings, 2043,
(2017) http://ceur-ws.org/Vol-2043/paper-04.pdf. Last accessed 2 Feb 2019.

20. DCMI Metadata Terms, http://dublincore.org/documents/dcmi-terms. Last ac-
cessed 2 Feb 2019.

21. Zagorulko, Y., Borovikova, O., Zagorulko, G.: Development of Ontologies of Sci-
entific Subject Domains Using Ontology Design Patterns. In: Kalinichenko, L.,
Manolopoulos, Y., Skvortsov, N., Sukhomlin, V. (eds.) Selected Papers of the XIX
International Conference on Data Analytics and Management in Data Intensive
Domains (DAMDID/RCDL 2017), Communications in Computer and Information
Science, 822, pp. 141–156. Springer, Heidelberg (2018).

22. Antoniou, G., Harmelen, F.: Web Ontology Language: OWL. In: Staab, S., Studer,
R. (eds.) Handbook on Ontologies, pp. 91–110. Springer Verlag, Berlin (2009).

23. Noy, N., McGuinness, D.: Ontology Development 101: A Guide to Creating Your
First Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-
01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, March
2001. Stanford (2001).

24. Zagorulko, Yu., Zagorulko, G.: Features of Development of Internet Resource for
Supporting Developers of Intelligent Decision Support Systems. In the proceed-
ings of Eight International conference “Open Semantic Technologies for Intelligent
Systems” pp. 63–66. Belarus, Minsk. (2018).

347

25. Braginskaya, L., Kovalevsky, V., Grigoryuk, A., Zagorulko, G.: Ontological ap-
proach to information support of investigations in active seismology. In: the pro-
ceedings of the 2nd Russian-Pacific Conference on Computer Technology and Ap-
plications (RPC),Vladivostok, Russky Island, Russia, 25-29 September, pp. 27–29,
IEEE Xplore digital library (2017). http://ieeexplore.ieee.org/document/8168060.
Last accessed 2 Feb 2019.

26. Maynard, D., Funk, A., Peters, W.: Using lexico-syntactic ontology design patterns
for ontology creation and population. In Proceedings of WOP2009 collocated with
ISWC2009, vol. 516. pp. 39–52. CEUR-WS.org (2009), http://ceur-ws.org/Vol-
516/pap08.pdf. Last accessed 2 Feb 2019.

348

Effective Scheduling of Strict Periodic Task Sets
with Given Permissible Periods in RTOS

S.A. Zelenova1 and S.V. Zelenov1,2[0000−0003−0446−0541]

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences
(ISP RAS)

25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
{sophia,zelenov}@ispras.ru

http://www.ispras.ru/
2 National Research University Higher School of Economics (HSE)

20, Myasnitskaya Ulitsa, Moscow, 101000, Russia
szelenov@hse.ru

https://www.hse.ru/

Abstract. In the paper, we suggest new approach to schedulability
problem for strict periodic tasks (a periodic task is strict if it must
be started in equal intervals of time – task’s period). Given permissi-
ble tasks’ periods, our approach allows to obtain quickly all schedulable
sets of tasks with such periods and to build immediately a conflict-free
schedule for each obtained set. The approach is based on mathematical
methods of graph theory and number theory. We illustrate the approach
by a number of examples and present current practical results.

Keywords: scheduling · real-time system · strict periodic task.

1 Introduction

Real-time systems are complex and promissing area of research. The such kind
of system requires distributed computing for real relation representation. Thus
it becomes necessary to have different kind of scheduling of task processing.

Now we recall some terms.

Suppose processor time is divided into minimal parts (scheduler quantums)
that are numerated. We refer to such a part as a point.

A point number t is called starting for a task if the task processing starts
at this point. The processing points different from the starting point are called
additional. A task duration is the number of all processing points for the task.

A task is called periodic, if its processing is repeated at equal time intervals.
Length of time of one such interval is called a period p of the task. A periodic task
is called strict periodic, if its adjacent starting points are at a distance exactly
equal to the task period. Besides, additional points related to the same processing
must be processed during the period following the corresponding starting point.

349

S.A. Zelenova, S.V. Zelenov

In this paper, we discuss static3 scheduling of strictly periodic preemptive4

tasks.
There are two simple considerations used to find conflict-free schedules.
The first is CPU usage. Let p1, ..., pk be periods of periodic tasks executed

on a processor. Let li be the worst case execution time for one instance of the
task with period pi. Then CPU usage should not be more than 100% [1]:

l1
p1

+ ...+
lk
pk

≤ 1. (1)

The second is the necessary condition for conflict-free schedules. Let p1 and
p2 be periods of two tasks. And let t1 and t2 be starting points of the tasks. If
t1 − t2 is divisible by the greatest common divisor (GCD) of p1 and p2 without
remainder, then the schedules conflict [2].

The standard way to find a schedule for a task system consists of two steps.
the first step is to place the starting points. The second step is to place the
additional points. These two actions have to be considered separately, because
it is not clear how to distribute the starting and additional points at the same
time, and whether it is possible in principle.

So far, scheduling algorithms have been based on the search of suitable
points [3–5]. But exhaustive search evokes the problem of combinatorial explo-
sion. The available methods of limiting the search are unsatisfactory, therefore,
it is not uncommon when a scheduling algorithm fails to find a solution even
though it exists.

We propose a different approach to the problem described above. This ap-
proach is based on our study of numerical properties of period systems [6].

Our research concerns only the first step of scheduling, namely, the distribu-
tion of starting points. Therefore, in the rest of the paper, the term “schedule”
means only the location of starting points (thus, we mean all durations li = 1 for
all tasks). In the paper, we propose an effective algorithm that enumerates all
schedulable task sets and builds starting points for them in an acceptable time.
We describe an outline of this algorithm and present some experimental results.

2 Preliminaries

Let D be a set of GCD of task period pairs. And let H be a closure of D with
respect to the operation of taking the greatest common divisor. Denote by GH

a directed graph constructed as follows. Vertices of GH are elements of H and
there is an edge from a vertice d1 to a vertice d2 if d2 is divisible by d1 and there
is no any d3 such, that d3 is divisible by d1 and d2 is divisible by d3. The vertice
d1 is called a parent and d2 is called a child.

Now, for all d from H, denote by Gd an undirected graph constructed as
follows. Vertices of Gd are all task periods and there is an edge between two
vertices if the periods have GCD equal to d.

3 Scheduling is called static, if the schedule is built before running the system.
4 Task is called preemptive, if it may be interrupted by another task

350

Effective Scheduling of Strict Periodic Task Sets . . .

In [6] we prove the following criterion for the existence of a conflict-free
schedule:

Theorem 1. The system of tasks with periods p1, p2, . . . , pk has a conflict-free
schedule if and only if

1. For all d ∈ GH , graph Gd have the proper coloring involving at most of d
colors.

2. Colors in different Gd graphs are “inherited” with respect to GH . This means
that two vertices having different colors in Gparent for a parent node from
GH cannot have the same color in Gchild for a child node from GH .

3. For any d ∈ GH with parents di ∈ GH , any period subset, which is colored
by the same color in each Gdi

, is colored by at most m = d
LCM(di)

colors in

Gd. The number m is called multiplier for a divider d.

Figure 1 shows the case when the construction of a conflict-free schedule is
impossible due to a violation of the third condition of theorem 1. Indeed, in
order to properly color G2, the set S = {6, 12, 18, 30} must be colored by only
color. On the other hand, in order to properly color G6, this set must be colored
by different colors. But m = 6

2 = 3 for the parent 2 and the child 6, thus there
are only three colors for coloring four elements of S.

Fig. 1. A violation of the third condition of the theorem 1.

Other examples of application of theorem 1 may be found in [7].

3 Motivation and Problem Statement

In real conditions, the task period depends on technical characteristics of devices
used. For example, it may correspond to the frequency of signals that are sent

351

S.A. Zelenova, S.V. Zelenov

or received by the task. And these characteristics are not diverse. Table 1 shows
examples of widely used task periods in industrial RTOS.

So, if the number of different permissible periods is not so large, is it possible
to generate all good task period sets? (“Good” means that there is a conflict-free
location of the starting points.)

Table 1. Frequencies and periods. One second contains 2000 points.

Hz Period Hz Period Hz Period

400 5 60 32-35 30 60-65

200 10 50 40 20 100

100 20 40 50 10 200

Let p1 < p2 < ... < pk be all possible periods. Suppose there are n1 tasks
with period p1, n2 tasks with period p2, ..., nk tasks with period pk. The tuple
(n1, n2, ..., nk) is called correct if it satisfies the condition (1) of the CPU usage.
We say that the correct tuple (n1, n2, ..., nk) is a solution if there is a conflict-
free location of starting points for tasks with such periods. The solutions can

be partially ordered as follows. We say that (n
(1)
1 , ..., n

(1)
k) ≤ (n

(1)
1 , ..., n

(1)
k) if

n
(1)
i ≤ n

(2)
i for all i = 1, ..., k.

It turns out that theorem 1 provides means to construct an algorithm for
generating all maximal solutions. (“Maximal” means maximal with respect to
the introduced order.) Obviously, for any solution τ , there exists a maximal
solution τ̃ , such that τ ≤ τ̃ . So, if we have all maximal solutions, then we can
construct all solutions.

4 Algorithm Sketch

In the most general form, the generation algorithm is as follows.

Loop: divider d in GH

If d is root Then
Loop: color distribution between periods pi

Color set contains d elements, which should be distributed between
the periods (or vertices of the graph Gd) taking into account the
conditions of theorem 1. Important: one color can refer to several
periods if the opposite is not forbidden (which is possible if there is
an edge between periods in the graph Gd).

End of loop for color distribution between periods
Else Loop: color distribution between periods pi

In this case it is necessary to take into account the color distributions
constructed for all parents of the divider d. Colors must be inheritors

352

Effective Scheduling of Strict Periodic Task Sets . . .

of the parent colors. If there are several parents, the inheritance must
be agreed with all parents. Besides, the conditions of theorem 1 must
be satisfied.

End of loop for color distribution between periods
End of loop for d

Note that all colors are distributed, so we do get the maximal solutions. In
addition, the information obtained during the construction of the maximal tuple
makes it possible to build immediately a conflict-free schedule for this tuple.

On the basis of the above scheme, we have developed a generator of the
solution set. Our implementation generates the desired set of maximal solutions
in an acceptable time. The results of the experiments are given below in section 6.

5 Application of the Generator

Now let’s discuss how to use such a generator in practice.
A generated set of solutions gives an answer to the first question of scheduling:

is it possible to build a conflict-free distribution of starting points for a given set
of tasks. In addition, we can get a schedule for starting points.

Complete information about available solutions allows to automatically dis-
tribute tasks between processors without any risk of choosing an impossible
combination of periods.

Fig. 2. A possible architecture of the automatic scheduler. Operator actions are grayed
out.

An automatically scheduling may include the following components (see fig-
ure 2):

– Database which includes all generated solutions for the given period set and
the schedules for these solutions.

– A query processor for standard database queries.
– Analyzer that builds a task processing schedule, in accordance with the user-

specified requirements.

353

S.A. Zelenova, S.V. Zelenov

6 Experimental results

We conducted several experiments to generate sets of solutions for different pe-
riod sets that correspond to graphs GH with different structural complexity (see
figures 3 and 4). For all produced solutions, schedules were generated and tested
for compliance with the condition for conflict-free schedules from the section 1.

Table 2. The number of maximal solutions for some period sets

Period set Time
The number of

maximal
solutions

The number of
maximal correct

tuples

10, 20, 35, 40, 80 0,5 sec 656 7 456

10, 20, 40, 50,
100, 200

32 min 17 sec 176 604 188 844

10,64,20,32,40,
50,100,200

42 min 34 sec 552 610 6 108 197

10,65,20,35,
40,100,200, 400,

1000
16 min 5 sec 702 264 1 263 391 852

Table 2 shows the number of maximal solutions for some period systems. The
last column contains the number of maximal correct tuples for the period set.
This characteristic shows that the structure of the graph GH is more important
for the number of solutions, then quantitative indicators of period set is. For
example, consider two last period sets. One can see that two large periods (400
and 1000) dramatically increase the number of maximal tuples, but have little
effect on the number of solutions.

Figures 3 and 4 show that the presence of additional cross-links in GH in-
creases the generation time, apparently complicating generation process, while
the tree structure of the graph GH simplifies and speeds up the generation.

7 Conclusion

In this paper, we studied the problem of effective finding the starting execution
points for scheduling strictly periodic tasks with given permissible periods. The

354

Effective Scheduling of Strict Periodic Task Sets . . .

Fig. 3. Relationship of graph GH with the number of solutions. Simple examples.

Fig. 4. Relationship of graph GH with the number of solutions. More complicated
examples.

355

S.A. Zelenova, S.V. Zelenov

main innovation is: instead of solving partial schedulability problem for each
set of tasks, we suggest to enumerate all schedulable sets of tasks with given
possible periods. Based on previously obtained theoretical results, we propose a
corresponding algorithm. Our implementation of the algorithm completes in an
acceptable time. The algorithm allows to build a database of schedulable sets of
tasks with all data necessary for schedule construction. Then one can use this
database to check any set of tasks against schedulability condition and to obtain
schedule immediately.

References

1. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. J. ACM 20, 46–61 (1973)

2. Yomsi, P.M., Sorel, Y.: Non-schedulability conditions for off-line scheduling of real-
time systems subject to precedence and strict periodicity constraints. In: Proc. of
the 11th IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA06. Prague (2006)

3. Yomsi, P.M., Sorel, Y.: Schedulability analysis for non necessarily harmonic real-
time systems with precedence and strict periodicity constraints using the exact
number of preemptions and no idle time. In: Proc. of the 4th Multidisciplinary
International Scheduling Conference, MISTA09. Dublin, Ireland (2009)

4. Zelenov, S.V.: Scheduling of strictly periodic tasks in real-time systems. Trudy ISP
RAN / Proc. ISP RAS 20, 113–122 (2011) (in Russian)

5. Tretyakov, A.V.: Automation of scheduling for periodic real-time systems. Trudy
ISP RAN / Proc. ISP RAS 22, 375–400 (2012) (in Russian)

6. Zelenova S.A., Zelenov S.V.: Non-conflict scheduling criterion for strict periodic
tasks. Trudy ISP RAN / Proc. ISP RAS 29 (6), 183–202 (2017) (in Russian)
https://doi.org/10.15514/ISPRAS-2017-29(6)-10

7. Zelenova, S.A., Zelenov, S.V.: Schedulability Analysis for Strictly Periodic
Tasks in RTOS. Programming and Computer Software 44 (3), 159–169 (2018)
https://doi.org/10.1134/S0361768818030076

Научное издание

A.P. Ershov Informatics Conference

PSI Conference Series, 12
th

 Edition

July 2–5, 2019, Novosibirsk, Akademgorodok, Russia

Preliminary Proceedings

N. Bjørner, I. Virbitskaite, A. Voronkov, Eds.

Статьи приводятся в авторской редакции

Дизайн обложки Т. М. Бульонковой

Ответственная за выпуск Н. А. Черемных

Подготовка к печати Г. Р. Семенихиной,

С. В. Исаковой, Т. А. Марковой, Е. А. Машковой, Е. В. Неклюдовой

Подписано в печать 07.06.2019 г. Формат 60х84 1/8.

Уч.-изд. л. 45,75. Усл. печ. л. 42,5.

Тираж 120 экз. Заказ № 155

Издательско-полиграфический центр НГУ

630090, г. Новосибирск, ул. Пирогова, 2

A. P. Ershov Institute of Informatics Systems

Sponsored by:

Organized by:

	Ершов
	Страница 1
	Страница 2

	Ершов
	Страница 1
	Страница 2

